
1MDPs, POMDPs, Abstractions

Spring School on Control Theory and Reinforcement Learning

CWI Research Semester Programme on Control Theory and
Reinforcement Learning: Connections and Challenges

Markov decision processes, Generalized policy iteration, partial
observability, abstractions

Frans A. Oliehoek

2MDPs, POMDPs, Abstractions

Part 1: Recap of stochastic sequential
decision making problems (“MDPs”)

3MDPs, POMDPs, Abstractions

Sequential stochastic problems

● Many problems have uncertain
components
● in fastest route: traffic
● in inventory management: sales
● in control of a robot:

noise in actuators, wheel slip, etc.
● in maintenance:

wear and tear of components

4MDPs, POMDPs, Abstractions

Sequential stochastic problems

● main idea:
● discrete time steps t=0,1,2,...
● “world” is in some state
● and changes stochastically

● The horizon (‘T’) of the problem: how many steps
● can be finite or infinite

a

s '
s→s '

5MDPs, POMDPs, Abstractions

Example: walk the cliff

● Actions:
● Up, Down, Left, Right
● can accidentally move to other direction

● States: Location
● Starting location (S)
● Terminal States
• G: Agent is ‘reset’ at S
• C: Agent is ‘reset’ at S

● Between resets: 1 “episode”
● Preferences with “rewards”

● 10 for getting to the goal (G)
● -100 for walking/falling into the cliff (C)

6MDPs, POMDPs, Abstractions

Policies

● So how should such policies π look like…?
● clearly need to condition on states...
● but they could depend on histories…?
● they could randomize…?

● For the problems we will consider **
it is a mapping from state to action: π(s) = a
● Randomization and history are not needed
● But a policy is a feedback plan, not an ‘open loop’ plan

**under some technical conditions

a

s '
s→ s ' , r

7MDPs, POMDPs, Abstractions

Stochastic changes of the world

● State transition function T(s,a,s’)
● Defines the world’s reactions to the agent’s actions

● Markov assumption:
Effect of actions depends only on current state:
 P(st | st-1 at-1 st-2 at-2 ….) = P(st | st-1 at-1)

It is a very strong assumption!
 → state has enough information to predict the future

● everything I need to know can be observed
● do not need to remember anything...

8MDPs, POMDPs, Abstractions

Goal (‘optimality criterion’)

● Optimality criterion: which policy π is best?
● Commonly: optimize long-term (sum of) rewards (‘return’):

▹ finite horizon task: G = R1 + R2 + … + RT
▹ continuing task: G = R1 + γ R2 + γ2 R3 + …

● discount factor γ in [0,1)

● Expected return, often called value:
 V(π) = E [G | policy = π]

9MDPs, POMDPs, Abstractions

Value Functions

● We will want to express rewards from stage t onwards:
● episodic / finite horizon: Gt = Rt+1 + Rt+2 + … + RT

● continuing / infinite horizon: Gt = Rt+1 + γ Rt+2 + γ2 Rt+3 …

● Now, expected (discounted) return:
● when acting according to policy π
● is expressed by the value function of π: vπ(s) = Eπ [Gt | St=s]

(“cost-to-go”)

10MDPs, POMDPs, Abstractions

Putting it together: MDPs
● A Markov decision process (MDP) M=<S,A,T,R>

● S – set of world states s
● A – set of actions a
● T – transition function
• specifies p(s'|s,a)
• enables: outcome uncertainty

● R – reward function
• Task encoded by rewards R(s,a,s’)
• also R(s,a) or R(s’)

● Optimality criterion: expected (discounted) return

a

s '
s→s ' ,r

Sutton&Barto V2: combine both into a single function
p(s’,r|s,a)

● makes explicit stochastic rewards
● can convert this to deterministic reward function: take expectation

(cf. p49 SBv2)

11MDPs, POMDPs, Abstractions

Part 2: finite horizon dynamic programming (on
trees)

12MDPs, POMDPs, Abstractions

Planning for a finite horizon
● We will only plan for T time steps

● Finite horizon problem, or
● online (“lookahead”) planning

● Just apply “maximum expected utility”
● but exploit temporal structure in computation

(“dynamic programming”)

13MDPs, POMDPs, Abstractions

Dynamic Programming

● Construct a plan for T time steps into the future

snow

sa sb

sa sb

sa sb

sa sb sa sb sa sbsa sb sa sb

...

a1 a2

a1 a1 a1a2 a2 a2a2

14MDPs, POMDPs, Abstractions

Dynamic Programming

● Construct a plan for T time steps into the future

snow

sa sb

sa sb

sa sb

sa sb sa sb sa sbsa sb sa sb

...

a1 a2

a1 a1 a1a2 a2 a2a2

4 4 4 4 42 2 2 2 2

start from last
time step
(only terminal rewards
for simplicity)

start from last
time step
(only terminal rewards
for simplicity)

15MDPs, POMDPs, Abstractions

Dynamic Programming

● Construct a plan for T time steps into the future

snow

sa sb

sa sb

sa sb

sa sb sa sb sa sbsa sb sa sb

...

a1 a2

a1 a1 a1a2 a2 a2a2

4 4 4 4 42 2 2 2 2

start from last
time step
start from last
time step

V(sa) = 4V(sa) = 4

16MDPs, POMDPs, Abstractions

Dynamic Programming

● Construct a plan for T time steps into the future

snow

sa sb

sa sb

sa sb

sa sb sa sb sa sbsa sb sa sb

...

a1 a2

a1 a1 a1a2 a2 a2a2

4 4 4 4 42 2 2 2 2

For each square:
→ what is expected
reward?

For each square:
→ what is expected
reward?

17MDPs, POMDPs, Abstractions

Dynamic Programming

● Construct a plan for T time steps into the future

snow

sa sb

sa sb

sa sb

sa sb sa sb sa sbsa sb sa sb

...

a1 a2

a1 a1 a1a2 a2 a2a2

4 4 4 4 42 2 2 2 2

For each square:
→ what is expected
reward?

For each square:
→ what is expected
reward?

Q(sa,a1) = R(sa,a1) + P(sa'|sa,a1)V(sa') + P(sb'|sb,a1)V(sb')

 = 0 + .8*4 + .2*2
 = 3.6

Q(sa,a1) = R(sa,a1) + P(sa'|sa,a1)V(sa') + P(sb'|sb,a1)V(sb')

 = 0 + .8*4 + .2*2
 = 3.6

18MDPs, POMDPs, Abstractions

Dynamic Programming

● Construct a plan for T time steps into the future

snow

sa sb

sa sb

sa sb

sa sb sa sb sa sbsa sb sa sb

...

a1 a2

a1 a1 a1a2 a2 a2a2

4 4 4 4 42 2 2 2 2

3.6

For each square:
→ what is expected
reward?

For each square:
→ what is expected
reward?

19MDPs, POMDPs, Abstractions

Dynamic Programming

● Construct a plan for T time steps into the future

snow

sa sb

sa sb

sa sb

sa sb sa sb sa sbsa sb sa sb

...

a1 a2

a1 a1 a1a2 a2 a2a2

4 4 4 4 42 2 2 2 2

For each square:
→ what is expected
reward?

For each square:
→ what is expected
reward?

Qt=1(sa,a2) = R(sa,a2) + P(sa'|sa,a2)V(sa')+ P(sb'|sb,a2)V(sb')

 = 0.5 + .5*4 + .5*2
 = 3.5

Qt=1(sa,a2) = R(sa,a2) + P(sa'|sa,a2)V(sa')+ P(sb'|sb,a2)V(sb')

 = 0.5 + .5*4 + .5*2
 = 3.53.6

20MDPs, POMDPs, Abstractions

Dynamic Programming

● Construct a plan for T time steps into the future

snow

sa sb

sa sb

sa sb

sa sb sa sb sa sbsa sb sa sb

...

a1 a2

a1 a1 a1a2 a2 a2a2

4 4 4 4 42 2 2 2 2

For each square:
→ what is expected
reward?

For each square:
→ what is expected
reward?

3.6 3.5 2.5 3.0 3.6

21MDPs, POMDPs, Abstractions

Dynamic Programming

● Construct a plan for T time steps into the future

snow

sa sb

sa sb

sa sb

sa sb sa sb sa sbsa sb sa sb

...

a1 a2

a1 a1 a1a2 a2 a2a2

4 4 4 4 42 2 2 2 2

So what action do
we pick?
So what action do
we pick?

3.6 3.5 2.5 3.0 3.6

22MDPs, POMDPs, Abstractions

Dynamic Programming

● Construct a plan for T time steps into the future

snow

sa sb

sa sb

sa sb

sa sb sa sb sa sbsa sb sa sb

...

a1 a2

a1 a1 a1a2 a2 a2a2

4 4 4 4 42 2 2 2 2

So what action do
we pick?
So what action do
we pick?

3.6 3.5 2.5 3.0 3.6

3.6

23MDPs, POMDPs, Abstractions

Dynamic Programming

● Construct a plan for T time steps into the future

snow

sa sb

sa sb

sa sb

sa sb sa sb sa sbsa sb sa sb

...

a1 a2

a1 a1 a1a2 a2 a2a2

4 4 4 4 42 2 2 2 2

et ceteraet cetera

3.6 3.5 2.5 3.0 3.6

3.6

3.4

3.4

24MDPs, POMDPs, Abstractions

Dynamic Programming

● Construct a plan for T time steps into the future

snow

sa sb

sa sb

sa sb

sa sb sa sb sa sbsa sb sa sb

...

a1 a2

a1 a1 a1a2 a2 a2a2

4 4 4 4 42 2 2 2 2

→ Take action a1 now
→ repeat next time step

→ Take action a1 now
→ repeat next time step

3.6 3.5 2.5 3.0 3.6

3.6

3.4

3.4

25MDPs, POMDPs, Abstractions

Dynamic Programming – limitations

● Problem: trees get huge… not practical→
● One solution: sampling (e.g., MCTS)

● But first… how about caching?

26MDPs, POMDPs, Abstractions

Avoiding trees completely. Use DAGs.

sK

s1

s2

t=T

27MDPs, POMDPs, Abstractions

Avoiding trees completely. Use DAGs.

sK

s1

s2

t=T

vT(s)

+4

-1

+2

28MDPs, POMDPs, Abstractions

Avoiding trees completely. Use DAGs.

sK

a1 s1s1

s2

a2

t=Tt=T-1

vT(s)

+4

-1

+2

qT-1(s1,a)

29MDPs, POMDPs, Abstractions

Avoiding trees completely. Use DAGs.

sK

a1 s1s1

s2

a2

t=Tt=T-1

vT(s)

+4

-1

+2

qT-1(s1,a)vT-1(s1)

30MDPs, POMDPs, Abstractions

Avoiding trees completely. Use DAGs.

sK

a1 s1s1

s2s2

a2

t=Tt=T-1

sK

vT-1(.) vT(.)

31MDPs, POMDPs, Abstractions

Avoiding trees completely. Use DAGs.

sK

a1 s1s1

s2s2

a2

t=Tt=T-1

sK

vT-1(.) vT(.)
a1s1

s2

a2

t=T-1

sK

vT-2(.)

etc.

32MDPs, POMDPs, Abstractions

Summarizing so far...

● MDPs formalize decision making in stochastic environment

● For finite horizon it is easy to use dynamic programming: exploit
temporal structure
● DP on tree of trajectories, great given infinite computation
● In general: use DAGs compute from t=T back to 0

33MDPs, POMDPs, Abstractions

Quiz

● Which are correct?
● DP exploits temporal structure
● DP on trees depends on the Markov property
● DP on DAGs is linear in the horizon
● DP is linear in the number of states

34MDPs, POMDPs, Abstractions

Next: Infinite horizon problems?
● Given an MDP <S,A,T,R> with discounted returns

● compute a policy π that optimizes value V(π)

● (Generalized) policy iteration:
1) pick an arbitrary π
2) compute its value function vπ(s)

3) use the value function to find a better policy π’

4) π π’, ← goto 2).

35MDPs, POMDPs, Abstractions

Part 3: the value of a policy

We will focus on a fixed (arbitrary) policy π

36MDPs, POMDPs, Abstractions

Fixing the Policy

█ An MDP graphically

█ Fixing the policy…
▷ agent will always select a=π(s)
▷ Induces a

“Markov reward process”
s1 s2s0

r0 r1

s1

a1

s2

s1~T(.|s0,a0)

s0

a0

r0 r1

37MDPs, POMDPs, Abstractions

● How can we compute vπ(s) = Eπ [Gt | St=s] ?
● It satisfies the Bellman equation:

● How to solve? How to do “policy evaluation” ?
● Two options:

● linear system of |S| equations, with |S| unknowns.
● iterative policy evaluation

vπ (s)=∑
a

π(a∣s)∑
s ' , r

p(s ' , r∣s , a)[r+γ vπ(s ')]

So what is the value of a particular policy?

38MDPs, POMDPs, Abstractions

● How can we compute vπ(s) = Eπ [Gt | St=s] ?
● It satisfies the Bellman equation:

● How to solve? How to do “policy evaluation” ?
● Two options:

● linear system of |S| equations, with |S| unknowns.
● iterative policy evaluation

vπ (s)=∑
a

π(a∣s)∑
s ' , r

p(s ' , r∣s , a)[r+γ vπ(s ')]

So what is the value of a particular policy?

Different forms of the Bellman equation.

all of these lead to the same result.

Different forms of the Bellman equation.

all of these lead to the same result.

vπ(s)=∑
a

π(a∣s)∑
s ' , r

p (s ' , r∣s , a)[r+γ vπ(s ')]

vπ(s)=∑
a

π(a∣s)∑
s '

p (s '∣s , a)[r (s , a , s ')+γ vπ(s ')]

vπ(s)=∑
a

π(a∣s)[r (s , a)+∑
s '

p (s '∣s , a) γ vπ(s ')]

vπ(s)=r (s ,π(s))+∑
s '

p (s '∣s ,π(s)) γ vπ(s ')

SBv2

r(s,a,s’)

r(s,a)

determ.
policy

39MDPs, POMDPs, Abstractions

Iterative Policy Evaluation (IPE)

● Given that we know what the value function is... how can we compute it?
● Steps:

● 1. fix the policy π to evaluate (let’s assume deterministic)
● 2. Take the Bellman equation…

… and turn it into an update equation:

● 3. Initialize, v0(s)=0, for all s
● 4. Apply the update equation, in iterations, to all states

vπ(s)=r (s ,π(s))+∑
s '

p (s '∣s ,π(s)) γ vπ(s ')

vk +1(s):=r (s ,π(s))+∑
s '

p(s '∣s ,π(s)) γ v k (s ')

← use variant that is
most convenient

← use variant that is
most convenient

So, we compute a sequence
(v0, v1, v2,….)

of “k-steps-to-go” value functions

40MDPs, POMDPs, Abstractions

Policy Evaluation Example

● A little maze:
● transitions:

N,E,S,W, deterministic movements
P(s’ = terminal | s=goal, a=*)=1

● rewards:
R(s=Goal,a=*) = +10
R(s=terminal, a=*) = 0
R(s=*, a=*) = -1 (otherwise)

● discount γ=0.9

terminal

goalgoal

41MDPs, POMDPs, Abstractions

Policy Evaluation Example

● A little maze:
● transitions:

N,E,S,W, deterministic movements
P(s’ = terminal | s=goal, a=*)=1

● rewards:
R(s=Goal,a=*) = +10
R(s=terminal, a=*) = 0
R(s=*, a=*) = -1 (otherwise)

● discount γ=0.9

0

0 0 0

0 0 0

00

0
terminal

goalgoal

Initialize v0(s) = 0Initialize v0(s) = 0

42MDPs, POMDPs, Abstractions

Policy Evaluation Example

● A little maze:
● transitions:

N,E,S,W, deterministic movements
P(s’ = terminal | s=goal, a=*)=1

● rewards:
R(s=Goal,a=*) = +10
R(s=terminal, a=*) = 0
R(s=*, a=*) = -1 (otherwise)

● discount γ=0.9

0

0 0 0

0 0 0

00

0
terminal

goalgoal

v1(terminal) = 0v1(terminal) = 0

v1(s):=r (s , π(s))+∑
s '

p(s '∣s ,π(s)) γ v0(s ')

43MDPs, POMDPs, Abstractions

Policy Evaluation Example

● A little maze:
● transitions:

N,E,S,W, deterministic movements
P(s’ = terminal | s=goal, a=*)=1

● rewards:
R(s=Goal,a=*) = +10
R(s=terminal, a=*) = 0
R(s=*, a=*) = -1 (otherwise)

● discount γ=0.9

0

0 0 0

0 0 0

00

0
terminal

goalgoal

v1(goal) = …?v1(goal) = …?

v1(s):=r (s , π(s))+∑
s '

p(s '∣s ,π(s)) γ v0(s ')

44MDPs, POMDPs, Abstractions

Policy Evaluation Example

● A little maze:
● transitions:

N,E,S,W, deterministic movements
P(s’ = terminal | s=goal, a=*)=1

● rewards:
R(s=Goal,a=*) = +10
R(s=terminal, a=*) = 0
R(s=*, a=*) = -1 (otherwise)

● discount γ=0.9

0

0 0 10

0 0 0

00

0
terminal

goalgoal

v1(goal) = 10v1(goal) = 10

v1(s):=r (s , π(s))+∑
s '

p(s '∣s ,π(s)) γ v0(s ')

45MDPs, POMDPs, Abstractions

Policy Evaluation Example

● A little maze:
● transitions:

N,E,S,W, deterministic movements
P(s’ = terminal | s=goal, a=*)=1

● rewards:
R(s=Goal,a=*) = +10
R(s=terminal, a=*) = 0
R(s=*, a=*) = -1 (otherwise)

● discount γ=0.9

0

0 0 10

0 0 0

00

0
terminal

goalgoal

v1((3,2)) = … ?v1((3,2)) = … ?

v1(s):=r (s , π(s))+∑
s '

p(s '∣s ,π(s)) γ v0(s ')

46MDPs, POMDPs, Abstractions

Policy Evaluation Example

● A little maze:
● transitions:

N,E,S,W, deterministic movements
P(s’ = terminal | s=goal, a=*)=1

● rewards:
R(s=Goal,a=*) = +10
R(s=terminal, a=*) = 0
R(s=*, a=*) = -1 (otherwise)

● discount γ=0.9

0

0 0 10

0 0 0

-10

0
terminal

goalgoal

v1((3,2)) = -1v1((3,2)) = -1

NOTE: the updates
 are ‘in parallel’!
NOTE: the updates
 are ‘in parallel’!

v1(s):=r (s ,π (s))+∑
s '
p(s '∣s ,π (s))γ v0(s ')

47MDPs, POMDPs, Abstractions

Policy Evaluation Example

● A little maze:
● transitions:

N,E,S,W, deterministic movements
P(s’ = terminal | s=goal, a=*)=1

● rewards:
R(s=Goal,a=*) = +10
R(s=terminal, a=*) = 0
R(s=*, a=*) = -1 (otherwise)

● discount γ=0.9

0

0 0 10

0 0 0

-10

0
terminal

goalgoal

remaining
states
v1(s) = …?

remaining
states
v1(s) = …?

v1(s):=r (s ,π (s))+∑
s '
p(s '∣s ,π (s))γ v0(s ')

48MDPs, POMDPs, Abstractions

● A little maze:
● transitions:

N,E,S,W, deterministic movements
P(s’ = terminal | s=goal, a=*)=1

● rewards:
R(s=Goal,a=*) = +10
R(s=terminal, a=*) = 0
R(s=*, a=*) = -1 (otherwise)

● discount γ=0.9

Policy Evaluation Example

-1

-1 -1 10

-1 -1 -1

-1-1

0
terminal

goalgoal

remaining
states
v1(s) = -1

remaining
states
v1(s) = -1

v1(s):=r (s ,π (s))+∑
s '
p(s '∣s ,π (s))γ v0(s ')

49MDPs, POMDPs, Abstractions

Policy Evaluation Example

-1

-1 -1 10

-1 -1 -1

-1-1

0
terminal

goalgoal

Have now computed
v1, lets move to v2...
Have now computed
v1, lets move to v2...

50MDPs, POMDPs, Abstractions

Policy Evaluation Example

-1.9

-1.9 -1.9 10

-1.9 -1.9 -1.9

8-1.9

0
terminal

goalgoal

have now computed v2

(the 2-steps-to-go value function)

have now computed v2

(the 2-steps-to-go value function)

51MDPs, POMDPs, Abstractions

Policy Evaluation Example

-2.71

-2.71 -2.71 10

-2.71 -2.71 -2.71

8-2.71

0
terminal

goalgoal

v3 is this:v3 is this:

What does this converge to…?What does this converge to…?

52MDPs, POMDPs, Abstractions

Policy Evaluation Example

-2.71

-2.71 -2.71 10

-2.71 -2.71 -2.71

8-2.71

0
terminal

goalgoal

v3 is this:v3 is this:
What does this converge to…?What does this converge to…?

∑
t=0

∞
γ t r=r

1−γ
=−1
1−0.9

=−10

53MDPs, POMDPs, Abstractions

Policy Evaluation Example

-10

-10 -10 10

-10 -10 -10

8-10

goalgoal

0
terminal

vπ=v∞ is this:vπ=v∞ is this:

54MDPs, POMDPs, Abstractions

Implementational issues

● As you saw, we did “parallel updates”
● vk is the k-steps-to-go value function

 (for following π)
● but requires 2 arrays to implement

● Can also implement in 1 array
● do updates “in place”
● also converges, and can be faster!
● but vk will no longer correspondence to k-steps-to-go value

55MDPs, POMDPs, Abstractions

Part 4: Computing an Optimal Policy

(Generalized) policy iteration
to compute an optimal policy π*

56MDPs, POMDPs, Abstractions

● 2 steps:
● policy evaluation: compute vπ(s)
● policy improvement: update π π’→

● By alternating these, converge to optimal policy π*

Policy Iteration

57MDPs, POMDPs, Abstractions

Policy Improvement – 1

● When we have computed vπ(s)…
...we want to use that to improve the policy!

● Let’s define the action-value function:

● expected value when selecting a at s, and following π afterwards

qπ(s , a)=∑
s ' , r

p(s ' , r∣s , a)[r+γ vπ(s ')]

58MDPs, POMDPs, Abstractions

Policy Improvement – 1

● When we have computed vπ(s)…
...we want to use that to improve the policy!

● Let’s define the action-value function:

● expected value when selecting a at s, and following π afterwards

qπ(s , a)=∑
s ' , r

p(s ' , r∣s , a)[r+γ vπ(s ')]

different forms of vπ → different forms of qπ !different forms of vπ → different forms of qπ !

vπ (s)=∑
a

π(a∣s)∑
s ' , r

p(s ' , r∣s , a)[r+γ vπ(s ')]

59MDPs, POMDPs, Abstractions

Policy Improvement – 2

● Now, given qπ(s,a), we can improve the policy...
...by being greedy:

forall s: π’(s) max← a qπ(s,a)

● Then repeat:
● policy evaluation
● policy improvement

 → called policy iteration

60MDPs, POMDPs, Abstractions

● Continuing with our little maze:
● convenient Q-value function:

Policy Improvement Example

-10

-10 -10 10

-10 -10 -10

8-10

0
terminal

goalgoal

vπ:vπ:

qπ(s , a)=r (s , a)+γ∑
s '

p(s '∣s , a)vπ(s ')

q(s(2,1), N) = -1 + .9 * -10 = -10
q(s(2,1), E) = -1 + .9 * +10 = +8
q(s(2,1), S) = -1 + .9 * -10 = -10
q(s(2,1), W) = -1 + .9 * -10 = -10

61MDPs, POMDPs, Abstractions

● Continuing with our little maze:
● convenient Q-value function:

Policy Improvement Example

-10

-10 -10 10

-10 -10 -10

8-10

0
terminal

goalgoal

vπ:vπ:

qπ(s , a)=r (s , a)+γ∑
s '

p(s '∣s , a)vπ(s ')

q(s(2,1), N) = -1 + .9 * -10 = -10
q(s(2,1), E) = -1 + .9 * +10 = +8
q(s(2,1), S) = -1 + .9 * -10 = -10
q(s(2,1), W) = -1 + .9 * -10 = -10

62MDPs, POMDPs, Abstractions

● Continuing with our little maze:
● convenient Q-value function:

Policy Improvement Example

-10

-10 -10 10

-10 -10 -10

8-10

0
terminal

goalgoal

vπ:vπ:

qπ(s , a)=r (s , a)+γ∑
s '

p(s '∣s , a)vπ(s ')

Other updates…Other updates…

63MDPs, POMDPs, Abstractions

● Continuing with our little maze:
● convenient Q-value function:

Policy Improvement Example

6.2

3.12 8 10

3.12 4.58 6.2

84.58

0
terminal

goalgoal

vπ:vπ:

qπ(s , a)=r (s , a)+γ∑
s '

p(s '∣s , a)vπ(s ')

then: compute value vπ of
this new policy, etc.

then: compute value vπ of
this new policy, etc.

64MDPs, POMDPs, Abstractions

Optimal policies & (action-) value functions

● So does this converge…?
● Yes! Converges to unique optimal value functions

● given by Bellman optimality equations:

● There can be multiple optimal policies
● they share the same optimal value function

v∗(s)=maxaq∗(s , a)

q∗(s , a)=∑
s ' , r

p (s ' , r∣s , a)[r+γ v∗(s ')]

65MDPs, POMDPs, Abstractions

Optimal policies & (action-) value functions

● So does this converge…?
● Yes! Converges to unique optimal value functions

● given by Bellman optimality equations:

● There can be multiple optimal policies
● they share the same optimal value function

v∗(s)=maxaq∗(s , a)

q∗(s , a)=∑
s ' , r

p (s ' , r∣s , a)[r+γ v∗(s ')]

66MDPs, POMDPs, Abstractions

Optimal policies & (action-) value functions

● So does this converge…?
● Yes! Converges to unique optimal value functions

● given by Bellman optimality equations:

● There can be multiple optimal policies
● they share the same optimal value function

v∗(s)=maxaq∗(s , a)

q∗(s , a)=∑
s ' , r

p (s ' , r∣s , a)[r+γ v∗(s ')]

6.2

6.2 8 10

3.12 4.58 6.2

84.58

0
terminal

goalgoal

v*v*

67MDPs, POMDPs, Abstractions

Generalized Policy Iteration & Value Iteration

● Is it needed to run policy evaluation until convergence…?
 → No..! Can do a few iterations of IPE, and then do policy improvement. Still works.

● Leads to “generalized policy iteration”: can approximate both policy evaluation and
improvement

● In the extreme: value iteration
● does only 1 IPE iteration
● It combines IPE and policy improvement

in a single update rule:

● repeatedly sweep through
state space, until convergence

v (s)←maxa{∑
s ' , r

p (s '∣s , a)[r (s , a , s ')+γ v (s ')]}

68MDPs, POMDPs, Abstractions

Summary so far

● Many problems are stochastic… need feedback plans→
● MDPs model these problems

● key component: Markov assumption

● Planning aka dynamic programming:
● Finite horizon: DP over a tree / DAG
● Infinite horizon: (generalized) policy iteration
• policy evaluation ↔ policy improvement

69MDPs, POMDPs, Abstractions

Part 5: What if we cannot observe the state?

Images by the U.S. National Park Service in public domain

70MDPs, POMDPs, Abstractions

Example: Predator-prey MDP

● We are the blue round predator
● A={left, right, up, down}

● Prey moving stochastically
● independent of us. (why important?)

● States…?
● relative positions.
● E.g.: current state s=(-3,4)
● (assumes “wrap around”)

71MDPs, POMDPs, Abstractions

Example: Predator-prey MDP

● But now we have limited range…
● State?

● still s=(-3,4)

● But what does the agent observe?
● current observation…?

o=’none’

72MDPs, POMDPs, Abstractions

Example: Predator-prey MDP

● But now we have limited range…
● State?

● still s=(-3,4)

● But what does the agent observe?
● current observation…?

o=(-1,1)

73MDPs, POMDPs, Abstractions

Types of Partial Observability

● Noise
● Sensors have measurement errors.
● Sensor (or other part of the agent) can fail.

● Perceptual aliasing
● When multiple situations can't be discriminated.
● I.e., multiple states give the same observation.

– e.g. what is behind a wall?

Image by the U.S. National Park Service in public domain.
Illustration from OpenClipart is licensed under CC0 1.0.

74MDPs, POMDPs, Abstractions

Formal model: POMDP

● A Markov decision process (MDP) M=<S,A,PT ,R>
● S – set of world states s
● A – set of actions a
● PT – transition function, P(s'|s,a)
● R – reward function, R(s,a)

● A partially observable MDP (POMDP), M=<S,A,O,PT,PO,R>
● O – set of observations o
● PO – observation function, P(o|a, s')

● Optimality criterion typically expected (discounted) return

75MDPs, POMDPs, Abstractions

Policies in P.O. environments

● Now given that the agent only gets some observations…
● what policy should he follow?
● How does such a policy even look like?

● No Markovian signal (i.e. the state) directly available to the agent...
➔ In general: should use all information!
➔ i.e. full history of actions and observations ht=(a0,o1,a1,…,at-1,ot)
➔ deterministic policies: observation histori

76MDPs, POMDPs, Abstractions

Why not just using observations?

● Could be very bad!
● randomization can help
● and history can help more!

Example from:

Singh, Satinder P., Tommi Jaakkola, and Michael I. Jordan. "Learning without
state-estimation in partially observable Markovian decision processes."

Machine Learning Proceedings 1994. Morgan Kaufmann, 1994. 284-292.

77MDPs, POMDPs, Abstractions

The Tiger Problem

● States: left / right (50% prob.)
● Actions: Open left, open right, listen
● Transitions: static, but opening resets.
● Observation: Hear left, Hear right

● correct 85% of the time.
● P(HearLeft | Listen, State=left) = 0.85
● P(HearRight | Listen, State=left) = 0.15

● Rewards:
● correct door +10,
● wrong door -100
● listen -1

78MDPs, POMDPs, Abstractions

The Tiger Problem

● So… when do you open the door?

● At the beginning?
● After HL ?
● After HL, HL ?
● After HL, HL, HL ?

(note: assuming “Listen” so far…!)

79MDPs, POMDPs, Abstractions

Value of histories

● We act based on histories ht=(a0,o1,a1,…ot-1,at-1,ot)
● histories take the role of states…

● Indeed, can define a history MDP !
● MHistMDP=<H,A,T,R>

● And this leads to value functions:
● Q(h,a) = R(h,a) + Σo P(h’=<h,a,o>|h,a) V(h’)
● V(h’) = maxa’ Q(h’,a’)

● How are R(h,a) and
T(h’|h,a) defined?

 → expectations over the
underlying states!

80MDPs, POMDPs, Abstractions

Solving POMDPs

● So we have found a recipe for dealing with POMDPs!
● For a finite horizon:

● generate the (look-ahead) tree
of all action-observation histories

● perform dynamic programming
on this tree

● Problem:
too many action-observation histories!

81MDPs, POMDPs, Abstractions

From histories → beliefs

● One would hope: not every history needs different treatment…?

● In the end, it is the states that determine the rewards.

● Suppose for horizon T, we are at the last time step t=T-1…
● Q(hT-1, a) = R(hT-1, a) = Σs P(s | hT-1) R(s, a)

82MDPs, POMDPs, Abstractions

From histories → beliefs

● One would hope: not every history needs different treatment…?

● In the end, it is the states that determine the rewards.

● Suppose for horizon T, we are at the last time step t=T-1…
● Q(hT-1, a) = R(hT-1, a) = Σs P(s | hT-1) R(s, a)

● posterior prob. over states,
● called belief, also b(s)
● sufficient to define the value for T-1

83MDPs, POMDPs, Abstractions

Beliefs are ‘sufficient statistics’

● Turns out, that beliefs b(s) P(s |h≜ t)
are sufficient to define the value functions for all stages t

● I.e, we can write
● Q(b,a) = R(b,a) + Σ P(b’|b, a) V(b’)
● V(b’) = maxa’ Q(b’,a’)

84MDPs, POMDPs, Abstractions

Using beliefs to solve POMDPs

● OK, so now what?
● Can define “belief MDP”, tree of (reachable) beliefs
● Q: how does that help...?

● A: many histories can correspond to the same belief!
● tree DAG (directed acyclic graph)→

● Alternative: plan for the continuum of all possible beliefs…!

85MDPs, POMDPs, Abstractions

DP by Exploiting the PWLC property

● Rewards are vectors
● R(., OR) = [10, -100]
● R(., Li) = [-1, 1]
● R(., OL) = [-100, 10]

● Can perform DP with
these vectors
● E.g. [Spaan 2012]

b(s=right) →

ex
pe

ct
ed

re

w
ar

d

→

0 1
-100

10

MTJ Spaan. Partially observable Markov decision processes. Reinforcement
learning: State-of-the-art, 387-414, 2012

86MDPs, POMDPs, Abstractions

POMDP Summary

● Many problems are partially observable
● cannot assume that observations are Markov

● Solutions
● use histories
● use beliefs

● Solution approaches:
● Discrete belief state DP: trees, DAGs
● Continuous belief state DP: exploit PWLC structure

There is
a bear!

ROAR!

Image by the U.S. National Park Service in public domain.
Illustrations from OpenClipart are licensed under CC0 1.0.

87MDPs, POMDPs, Abstractions

Part 6: What if we do not
want to observe the full state?

 → Abstraction

Illustration by Nik on Unsplash

88MDPs, POMDPs, Abstractions

Even MDPs are usually difficult...

● Real world problems have
huge state spaces…

 → can we make abstractions?

● Specifically, we consider state abstractions
▹ function φ(s) that maps state s abstract state → φ Suau, Miguel, et al. "Distributed influence-augmented local simulators for

parallel MARL in large networked systems." Advances in Neural Information
Processing Systems 35 (2022): 28305-28318.

89MDPs, POMDPs, Abstractions

Abstractions partition the state space

● Abstract state φ = cluster of states
● What are good abstractions?
● how to cluster…?

● Different types of abstractions:
● φ0 — identity (i.e., no abstraction)
● φm — model irrelevance, preserve R,T

▹ φΠ — QΠ irrelevance (for all π Π), preserves Q-values∊

▹ φQ* — Q* irrelevance, preserves all optimal Q-values
▹ φa* — a* irrelevance, preserve Q(., a*)
▹ φπ* — π* irrelevance, preserves optimal action

■ Hierarchy:
 φ0 ISA φm ISA φΠ ISA φQ* ISA φQ* ISA φa* ISA φπ*

Li, Lihong, Thomas J. Walsh, and Michael L. Littman. "Towards a unified theory of
state abstraction for MDPs." AI&M 1.2 (2006): 3.

coarser

90MDPs, POMDPs, Abstractions

Abstract MDPs

● Given and MDP and some φ….
….can create an abstract MDP:

● Weighting function ωφ(s)
▹ specifies the assumed state probabilities
▹ for each abstract state φ

● Transitions:
 T(φ’|φ,a) = Σs’ φ’∈ Σs φ∈ T(s’|s,a) ωφ(s)

● Rewards:
 R(φ,a) = Σs φ∈ R(s,a) ωφ(s)

● Under some assumptions (‘ε-model similarity abstraction’): value loss bounded.

91MDPs, POMDPs, Abstractions

Abstraction as a POMDP

● Abstraction can be thought of as a POMDP!
● abstract states are observations: φ ↔ o
● myopic decisions in these POMDPs can be good!

■ When entering φ, there is a distribution over states
▹ there is a true belief, that depends on history ht=(φ0,a0,…,at-1,φt)

■ ωφ(s) approximates that belief
▹ in a non-history dependent way

 → an Abstract MDP is an MDP
 → an Abstract MDP can be constructed and used for planning, it can not be ‘experienced’

92MDPs, POMDPs, Abstractions

Conclusions

● Many problems are sequential and stochastic model as MDPs→
● ‘Solving’ MDPs

● finite horizon: ‘plain’ dynamic progamming
● infinite horizon: (generalized) policy iteration

● Partial observable problems… POMDPs→
● Large problems: state abstraction…

● are making the problem a POMDP!

There is
a bear!

ROAR!

Image by the U.S. National Park Service in public domain.
Illustrations from OpenClipart are licensed under CC0 1.0.

93MDPs, POMDPs, Abstractions

Policy Evaluation Example

● A little maze:
● transitions:

N,E,S,W, deterministic movements
P(s’ = terminal | s=goal, a=*)=1

● rewards:
R(s=Goal,a=*) = +10
R(s=terminal, a=*) = 0
R(s=*, a=*) = -1 (otherwise)

● discount γ=0.9

terminal

goalgoal

94MDPs, POMDPs, Abstractions

Policy Evaluation Example

● A little maze:
● transitions:

N,E,S,W, deterministic movements
P(s’ = terminal | s=goal, a=*)=1

● rewards:
R(s=Goal,a=*) = +10
R(s=terminal, a=*) = 0
R(s=*, a=*) = -1 (otherwise)

● discount γ=0.9

terminal

goalgoal

when hitting a wall
we stay in place

when hitting a wall
we stay in place

95MDPs, POMDPs, Abstractions

Policy Evaluation Example

● A little maze:
● transitions:

N,E,S,W, deterministic movements
P(s’ = terminal | s=goal, a=*)=1

● rewards:
R(s=Goal,a=*) = +10
R(s=terminal, a=*) = 0
R(s=*, a=*) = -1 (otherwise)

● discount γ=0.9

terminal

goalgoal

First step…?First step…?

96MDPs, POMDPs, Abstractions

Policy Evaluation Example

● A little maze:
● transitions:

N,E,S,W, deterministic movements
P(s’ = terminal | s=goal, a=*)=1

● rewards:
R(s=Goal,a=*) = +10
R(s=terminal, a=*) = 0
R(s=*, a=*) = -1 (otherwise)

● discount γ=0.9

0

0 0 0

0 0 0

00

0
terminal

goalgoal

Initialize v0(s) = 0Initialize v0(s) = 0

97MDPs, POMDPs, Abstractions

Policy Evaluation Example

● A little maze:
● transitions:

N,E,S,W, deterministic movements
P(s’ = terminal | s=goal, a=*)=1

● rewards:
R(s=Goal,a=*) = +10
R(s=terminal, a=*) = 0
R(s=*, a=*) = -1 (otherwise)

● discount γ=0.9

0

0 0 0

0 0 0

00

0
terminal

goalgoal

Let’s start
updating...
Let’s start
updating...

v1(s):=r (s , π(s))+∑
s '

p(s '∣s ,π(s)) γ v0(s ')

98MDPs, POMDPs, Abstractions

Policy Evaluation Example

● A little maze:
● transitions:

N,E,S,W, deterministic movements
P(s’ = terminal | s=goal, a=*)=1

● rewards:
R(s=Goal,a=*) = +10
R(s=terminal, a=*) = 0
R(s=*, a=*) = -1 (otherwise)

● discount γ=0.9

0

0 0 0

0 0 0

00

0
terminal

goalgoal

v1(terminal) =
… ?
v1(terminal) =
… ?

v1(s):=r (s , π(s))+∑
s '

p(s '∣s ,π(s)) γ v0(s ')

99MDPs, POMDPs, Abstractions

Policy Evaluation Example

● A little maze:
● transitions:

N,E,S,W, deterministic movements
P(s’ = terminal | s=goal, a=*)=1

● rewards:
R(s=Goal,a=*) = +10
R(s=terminal, a=*) = 0
R(s=*, a=*) = -1 (otherwise)

● discount γ=0.9

0

0 0 0

0 0 0

00

0
terminal

goalgoal

v1(terminal) = 0v1(terminal) = 0

v1(s):=r (s , π(s))+∑
s '

p(s '∣s ,π(s)) γ v0(s ')

100MDPs, POMDPs, Abstractions

Policy Evaluation Example

● A little maze:
● transitions:

N,E,S,W, deterministic movements
P(s’ = terminal | s=goal, a=*)=1

● rewards:
R(s=Goal,a=*) = +10
R(s=terminal, a=*) = 0
R(s=*, a=*) = -1 (otherwise)

● discount γ=0.9

0

0 0 0

0 0 0

00

0
terminal

goalgoal

v1(goal) = …?v1(goal) = …?

v1(s):=r (s , π(s))+∑
s '

p(s '∣s ,π(s)) γ v0(s ')

101MDPs, POMDPs, Abstractions

Policy Evaluation Example

● A little maze:
● transitions:

N,E,S,W, deterministic movements
P(s’ = terminal | s=goal, a=*)=1

● rewards:
R(s=Goal,a=*) = +10
R(s=terminal, a=*) = 0
R(s=*, a=*) = -1 (otherwise)

● discount γ=0.9

0

0 0 10

0 0 0

00

0
terminal

goalgoal

v1(goal) = 10v1(goal) = 10

v1(s):=r (s , π(s))+∑
s '

p(s '∣s ,π(s)) γ v0(s ')

102MDPs, POMDPs, Abstractions

Policy Evaluation Example

● A little maze:
● transitions:

N,E,S,W, deterministic movements
P(s’ = terminal | s=goal, a=*)=1

● rewards:
R(s=Goal,a=*) = +10
R(s=terminal, a=*) = 0
R(s=*, a=*) = -1 (otherwise)

● discount γ=0.9

0

0 0 10

0 0 0

00

0
terminal

goalgoal

v1((3,2)) = … ?v1((3,2)) = … ?

v1(s):=r (s , π(s))+∑
s '

p(s '∣s ,π(s)) γ v0(s ')

103MDPs, POMDPs, Abstractions

Policy Evaluation Example

● A little maze:
● transitions:

N,E,S,W, deterministic movements
P(s’ = terminal | s=goal, a=*)=1

● rewards:
R(s=Goal,a=*) = +10
R(s=terminal, a=*) = 0
R(s=*, a=*) = -1 (otherwise)

● discount γ=0.9

0

0 0 10

0 0 0

-10

0
terminal

goalgoal

v1((3,2)) = -1v1((3,2)) = -1

NOTE: the updates
 are ‘in parallel’!
NOTE: the updates
 are ‘in parallel’!

v1(s):=r (s , π(s))+∑
s '

p(s '∣s ,π(s)) γ v0(s ')

104MDPs, POMDPs, Abstractions

Policy Evaluation Example

● A little maze:
● transitions:

N,E,S,W, deterministic movements
P(s’ = terminal | s=goal, a=*)=1

● rewards:
R(s=Goal,a=*) = +10
R(s=terminal, a=*) = 0
R(s=*, a=*) = -1 (otherwise)

● discount γ=0.9

0

0 0 10

0 0 0

-10

0
terminal

goalgoal

remaining
states
v1(s) = …?

remaining
states
v1(s) = …?

v1(s):=r (s , π(s))+∑
s '

p(s '∣s ,π(s)) γ v0(s ')

105MDPs, POMDPs, Abstractions

Policy Evaluation Example

● A little maze:
● transitions:

N,E,S,W, deterministic movements
P(s’ = terminal | s=goal, a=*)=1

● rewards:
R(s=Goal,a=*) = +10
R(s=terminal, a=*) = 0
R(s=*, a=*) = -1 (otherwise)

● discount γ=0.9

-1

-1 -1 10

-1 -1 -1

-1-1

0
terminal

goalgoal

remaining
states
v1(s) = -1

remaining
states
v1(s) = -1

v1(s):=r (s , π(s))+∑
s '

p(s '∣s ,π(s)) γ v0(s ')

106MDPs, POMDPs, Abstractions

Policy Evaluation Example

-1

-1 -1 10

-1 -1 -1

-1-1

0
terminal

goalgoal

Have now computed
v1, lets move to v2...
Have now computed
v1, lets move to v2...

107MDPs, POMDPs, Abstractions

Policy Evaluation Example

-1

-1 -1 10

-1 -1 -1

-1-1

0
terminal

goalgoal

new value?new value?

v2(s):=r (s ,π(s))+∑
s '

p (s '∣s ,π(s)) γ v1(s ')

108MDPs, POMDPs, Abstractions

Policy Evaluation Example

-1

-1 -1 10

-1 -1 -1

-1-1

0
terminal

goalgoal

new value?new value?

v2(s):=r (s ,π(s))+∑
s '

p (s '∣s ,π(s)) γ v1(s ')

109MDPs, POMDPs, Abstractions

Policy Evaluation Example

-1

-1 -1 10

-1 -1 -1

-1-1

0
terminal

goalgoal

new value?new value?

v2(s):=r (s ,π(s))+∑
s '

p (s '∣s ,π(s)) γ v1(s ')

110MDPs, POMDPs, Abstractions

Policy Evaluation Example

-1

-1 -1.9 10

-1 -1 -1

-1-1

0
terminal

goalgoal

new value?new value?

v2(s):=r (s ,π(s))+∑
s '

p (s '∣s ,π(s)) γ v1(s ')

111MDPs, POMDPs, Abstractions

Policy Evaluation Example

-1

-1 -1.9 10

-1 -1 -1

-1-1

0
terminal

goalgoal

new value?new value?

v2(s):=r (s ,π(s))+∑
s '

p (s '∣s ,π(s)) γ v1(s ')

112MDPs, POMDPs, Abstractions

Policy Evaluation Example

-1.9

-1 -1.9 10

-1 -1 -1

-1-1

0
terminal

goalgoal

new value?new value?

v2(s):=r (s ,π(s))+∑
s '

p (s '∣s ,π(s)) γ v1(s ')

113MDPs, POMDPs, Abstractions

Policy Evaluation Example

-1.9

-1 -1.9 10

-1 -1 -1

-1-1

0
terminal

goalgoal

new value?new value?

v2(s):=r (s ,π(s))+∑
s '

p (s '∣s ,π(s)) γ v1(s ')

114MDPs, POMDPs, Abstractions

Policy Evaluation Example

-1.9

-1 -1.9 10

-1 -1 -1

8-1

0
terminal

goalgoal

new value?new value?

v2(s):=r (s ,π(s))+∑
s '

p (s '∣s ,π(s)) γ v1(s ')

115MDPs, POMDPs, Abstractions

Policy Evaluation Example

-1.9

-1 -1.9 10

-1 -1 -1

8-1

0
terminal

goalgoal

new value?new value?

v2(s):=r (s ,π(s))+∑
s '

p (s '∣s ,π(s)) γ v1(s ')

116MDPs, POMDPs, Abstractions

Policy Evaluation Example

-1.9

-1 -1.9 10

-1 -1 -1.9

8-1

0
terminal

goalgoal

new value?new value?

when hitting a wall
we stay in place

when hitting a wall
we stay in place

v2(s):=r (s ,π(s))+∑
s '

p (s '∣s ,π(s)) γ v1(s ')

117MDPs, POMDPs, Abstractions

Policy Evaluation Example

-1.9

-1 -1.9 10

-1 -1 -1.9

8-1

0
terminal

goalgoal

rest...new value?rest...new value?

v2(s):=r (s ,π(s))+∑
s '

p (s '∣s ,π(s)) γ v1(s ')

118MDPs, POMDPs, Abstractions

Policy Evaluation Example

-1.9

-1.9 -1.9 10

-1.9 -1.9 -1.9

8-1.9

0
terminal

goalgoal

have now computed v2

(the 2-steps-to-go value function)

have now computed v2

(the 2-steps-to-go value function)

119MDPs, POMDPs, Abstractions

Policy Evaluation Example

-1.9

-1.9 -1.9 10

-1.9 -1.9 -1.9

8-1.9

0
terminal

goalgoal

how about v3...?how about v3...?

120MDPs, POMDPs, Abstractions

Policy Evaluation Example

-2.71

-2.71 -2.71 10

-2.71 -2.71 -2.71

8-2.71

0
terminal

goalgoal

v3 is this:v3 is this:

121MDPs, POMDPs, Abstractions

Policy Evaluation Example

-2.71

-2.71 -2.71 10

-2.71 -2.71 -2.71

8-2.71

0
terminal

goalgoal

v3 is this:v3 is this:

-1 + .9 * (-1) + .92 * (-1) = -2.71-1 + .9 * (-1) + .92 * (-1) = -2.71

122MDPs, POMDPs, Abstractions

Policy Evaluation Example

-2.71

-2.71 -2.71 10

-2.71 -2.71 -2.71

8-2.71

0
terminal

goalgoal

v3 is this:v3 is this:
What does this converge to…?What does this converge to…?

123MDPs, POMDPs, Abstractions

Policy Evaluation Example

-2.71

-2.71 -2.71 10

-2.71 -2.71 -2.71

8-2.71

0
terminal

goalgoal

v3 is this:v3 is this:
What does this converge to…?What does this converge to…?

∑
t=0

∞

γt r=r
1−γ

=−1
1−0.9

=−10

124MDPs, POMDPs, Abstractions

Policy Evaluation Example

-10

-10 -10 10

-10 -10 -10

8-10

goalgoal

0
terminal

vπ=v∞ is this:vπ=v∞ is this:

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124

