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Part 1: Recap of stochastic sequential 
decision making problems (“MDPs”)
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Sequential stochastic problems

● Many problems have uncertain
components
● in fastest route: traffic 
● in inventory management: sales
● in control of a robot: 

noise in actuators, wheel slip, etc.
● in maintenance:

wear and tear of components
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Sequential stochastic problems

● main idea:
● discrete time steps t=0,1,2,...
● “world” is in some state
● and changes stochastically

● The horizon (‘T’) of the problem: how many steps
● can be finite or infinite

a

s '
s→s '
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Example: walk the cliff

● Actions: 
● Up, Down, Left, Right
● can accidentally move to other direction

● States: Location 
● Starting location (S)
● Terminal States
• G: Agent is ‘reset’ at S
• C: Agent is ‘reset’ at S

● Between resets: 1 “episode”
● Preferences with “rewards”

● 10 for getting to the goal (G)
● -100 for walking/falling into the cliff (C)
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Policies

● So how should such policies π look like…?
● clearly need to condition on states...
● but they could depend on histories…?
● they could randomize…?

● For the problems we will consider **
it is a mapping from state to action:   π(s) = a
● Randomization and history are not needed
● But a policy  is a feedback plan, not an ‘open loop’ plan

**under some technical conditions

a

s '
s→ s ' , r
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Stochastic changes of the world

● State transition function T(s,a,s’)
● Defines the world’s reactions to the agent’s actions

● Markov assumption: 
Effect of actions depends only on current state:
 P(st | st-1 at-1 st-2 at-2 ….) = P(st | st-1 at-1 )

It is a very strong assumption!
 → state has enough information to predict the future

● everything I need to know can be observed
● do not need to remember anything...
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Goal (‘optimality criterion’)

● Optimality criterion: which policy π is best?
● Commonly: optimize long-term (sum of) rewards (‘return’):      

▹ finite horizon task:                                   G = R1 + R2 + … + RT
▹ continuing task:                                        G = R1 + γ R2 + γ2 R3 + …

● discount factor γ in [0,1)

● Expected return, often called value:
    V(π) = E [ G | policy = π ] 
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Value Functions

● We will want to express rewards from stage t onwards:
● episodic / finite horizon:                               Gt = Rt+1 + Rt+2 + … + RT

● continuing / infinite horizon:                        Gt = Rt+1 + γ Rt+2 + γ2 Rt+3  … 
 

● Now, expected (discounted) return:       
● when acting according to policy π
● is expressed by the value function of π:        vπ(s) = Eπ [ Gt  | St=s ]

(“cost-to-go”)
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Putting it together: MDPs
● A Markov decision process (MDP) M=<S,A,T,R>

● S – set of world states s
● A – set of actions a
● T – transition function
• specifies p(s'|s,a)
• enables: outcome uncertainty 

● R – reward function
• Task encoded by rewards R(s,a,s’)
• also R(s,a) or R(s’)

● Optimality criterion: expected (discounted) return 

a

s '
s→s ' ,r

Sutton&Barto V2: combine both into a single function       
p(s’,r|s,a)
 
● makes explicit stochastic rewards
● can convert this to deterministic reward function: take expectation 

(cf. p49 SBv2)
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Part 2: finite horizon dynamic programming (on 
trees)
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Planning for a finite horizon
● We will only plan for T time steps

● Finite horizon problem, or
● online (“lookahead”) planning

● Just apply “maximum expected utility”
● but exploit temporal structure in computation

(“dynamic programming”)
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Dynamic Programming

● Construct a plan for T time steps into the future

snow

sa sb

sa sb

sa sb

sa sb sa sb sa sbsa sb sa sb

...

a1 a2

a1 a1 a1a2 a2 a2a2
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Dynamic Programming

● Construct a plan for T time steps into the future

snow

sa sb

sa sb

sa sb

sa sb sa sb sa sbsa sb sa sb

...

a1 a2

a1 a1 a1a2 a2 a2a2

4 4 4 4 42 2 2 2 2

start from last 
time step
(only terminal rewards 
for simplicity)

start from last 
time step
(only terminal rewards 
for simplicity)
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Dynamic Programming

● Construct a plan for T time steps into the future

snow

sa sb

sa sb

sa sb

sa sb sa sb sa sbsa sb sa sb

...

a1 a2

a1 a1 a1a2 a2 a2a2

4 4 4 4 42 2 2 2 2

start from last 
time step
start from last 
time step

V(sa) = 4V(sa) = 4
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Dynamic Programming

● Construct a plan for T time steps into the future

snow

sa sb

sa sb

sa sb

sa sb sa sb sa sbsa sb sa sb

...

a1 a2

a1 a1 a1a2 a2 a2a2

4 4 4 4 42 2 2 2 2

For each square:
→ what is expected 
reward?

For each square:
→ what is expected 
reward?
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Dynamic Programming

● Construct a plan for T time steps into the future

snow

sa sb

sa sb

sa sb

sa sb sa sb sa sbsa sb sa sb

...

a1 a2

a1 a1 a1a2 a2 a2a2

4 4 4 4 42 2 2 2 2

For each square:
→ what is expected 
reward?

For each square:
→ what is expected 
reward?

Q(sa,a1)  = R(sa,a1)   +   P(sa'|sa,a1)V(sa')    +    P(sb'|sb,a1)V(sb')

                = 0          +              .8*4        +               .2*2  
                = 3.6 

Q(sa,a1)  = R(sa,a1)   +   P(sa'|sa,a1)V(sa')    +    P(sb'|sb,a1)V(sb')

                = 0          +              .8*4        +               .2*2  
                = 3.6 
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Dynamic Programming

● Construct a plan for T time steps into the future

snow

sa sb

sa sb

sa sb

sa sb sa sb sa sbsa sb sa sb

...

a1 a2

a1 a1 a1a2 a2 a2a2

4 4 4 4 42 2 2 2 2

3.6

For each square:
→ what is expected 
reward?

For each square:
→ what is expected 
reward?
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Dynamic Programming

● Construct a plan for T time steps into the future

snow

sa sb

sa sb

sa sb

sa sb sa sb sa sbsa sb sa sb

...

a1 a2

a1 a1 a1a2 a2 a2a2

4 4 4 4 42 2 2 2 2

For each square:
→ what is expected 
reward?

For each square:
→ what is expected 
reward?

Qt=1(sa,a2) = R(sa,a2) + P(sa'|sa,a2)V(sa')+ P(sb'|sb,a2)V(sb')

                = 0.5  +  .5*4  + .5*2  
                = 3.5

Qt=1(sa,a2) = R(sa,a2) + P(sa'|sa,a2)V(sa')+ P(sb'|sb,a2)V(sb')

                = 0.5  +  .5*4  + .5*2  
                = 3.53.6
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Dynamic Programming

● Construct a plan for T time steps into the future

snow

sa sb

sa sb

sa sb

sa sb sa sb sa sbsa sb sa sb

...

a1 a2

a1 a1 a1a2 a2 a2a2

4 4 4 4 42 2 2 2 2

For each square:
→ what is expected 
reward?

For each square:
→ what is expected 
reward?

3.6 3.5 2.5 3.0 3.6
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Dynamic Programming

● Construct a plan for T time steps into the future

snow

sa sb

sa sb

sa sb

sa sb sa sb sa sbsa sb sa sb

...

a1 a2

a1 a1 a1a2 a2 a2a2

4 4 4 4 42 2 2 2 2

So what action do 
we pick?
So what action do 
we pick?

3.6 3.5 2.5 3.0 3.6
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Dynamic Programming

● Construct a plan for T time steps into the future

snow

sa sb

sa sb

sa sb

sa sb sa sb sa sbsa sb sa sb

...

a1 a2

a1 a1 a1a2 a2 a2a2

4 4 4 4 42 2 2 2 2

So what action do 
we pick?
So what action do 
we pick?

3.6 3.5 2.5 3.0 3.6

3.6
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Dynamic Programming

● Construct a plan for T time steps into the future

snow

sa sb

sa sb

sa sb

sa sb sa sb sa sbsa sb sa sb

...

a1 a2

a1 a1 a1a2 a2 a2a2

4 4 4 4 42 2 2 2 2

et ceteraet cetera

3.6 3.5 2.5 3.0 3.6

3.6

3.4

3.4
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Dynamic Programming

● Construct a plan for T time steps into the future

snow

sa sb

sa sb

sa sb

sa sb sa sb sa sbsa sb sa sb

...

a1 a2

a1 a1 a1a2 a2 a2a2

4 4 4 4 42 2 2 2 2

→ Take action a1 now
→ repeat next time step

→ Take action a1 now
→ repeat next time step

3.6 3.5 2.5 3.0 3.6

3.6

3.4

3.4
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Dynamic Programming – limitations

● Problem: trees get huge…  not practical→
● One solution: sampling (e.g., MCTS)

● But first… how about caching?
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Avoiding trees completely. Use DAGs.

sK

s1

s2

t=T
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Avoiding trees completely. Use DAGs.

sK

s1

s2

t=T

vT(s)

+4

-1

+2
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Avoiding trees completely. Use DAGs.

sK

a1 s1s1

s2

a2

t=Tt=T-1

vT(s)

+4

-1

+2

qT-1(s1,a)



29MDPs, POMDPs, Abstractions

Avoiding trees completely. Use DAGs.

sK

a1 s1s1

s2

a2

t=Tt=T-1

vT(s)

+4

-1

+2

qT-1(s1,a)vT-1(s1)
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Avoiding trees completely. Use DAGs.

sK

a1 s1s1

s2s2

a2

t=Tt=T-1

sK

vT-1( . ) vT( . )
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Avoiding trees completely. Use DAGs.

sK

a1 s1s1

s2s2

a2

t=Tt=T-1

sK

vT-1( . ) vT( . )
a1s1

s2

a2

t=T-1

sK

vT-2( . )

etc.
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Summarizing so far...

● MDPs formalize decision making in stochastic environment

● For finite horizon it is easy to use dynamic programming: exploit 
temporal structure 
● DP on tree of trajectories, great given infinite computation
● In general: use DAGs compute from t=T back to 0
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Quiz

● Which are correct?
● DP exploits temporal structure
● DP on trees depends on the Markov property
● DP on DAGs is linear in the horizon
● DP is linear in the number of states
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Next: Infinite horizon problems?
● Given an MDP <S,A,T,R> with discounted returns

● compute a policy π  that optimizes value V(π)

● (Generalized) policy iteration:
1) pick an arbitrary π
2) compute its value function vπ(s)

3) use the value function to find a better policy π’

4) π  π’, ← goto 2).
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Part 3: the value of a policy

We will focus on a fixed (arbitrary) policy π
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Fixing the Policy

█ An MDP graphically

█ Fixing the policy…
▷ agent will always select a=π(s)
▷ Induces a 

“Markov reward process” 
s1 s2s0

r0 r1

s1

a1

s2

s1~T(.|s0,a0)

s0

a0

r0 r1
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● How can we compute vπ(s) = Eπ [ Gt  | St=s ]  ?
● It satisfies the Bellman equation:

● How to solve? How to do “policy evaluation” ?
● Two options:

● linear system of |S| equations, with |S| unknowns. 
● iterative policy evaluation

vπ (s)=∑
a

π(a∣s)∑
s ' , r

p(s ' , r∣s , a)[r+γ vπ(s ' )]

So what is the value of a particular policy?
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● How can we compute vπ(s) = Eπ [ Gt  | St=s ]  ?
● It satisfies the Bellman equation:

● How to solve? How to do “policy evaluation” ?
● Two options:

● linear system of |S| equations, with |S| unknowns. 
● iterative policy evaluation

vπ (s)=∑
a

π(a∣s)∑
s ' , r

p(s ' , r∣s , a)[r+γ vπ(s ' )]

So what is the value of a particular policy?

Different forms of the Bellman equation.

all of these lead to the same result.

Different forms of the Bellman equation.

all of these lead to the same result.

vπ(s)=∑
a

π(a∣s)∑
s ' , r

p (s ' , r∣s , a)[r+γ vπ(s ' )]

vπ(s)=∑
a

π(a∣s)∑
s '

p (s '∣s , a)[r (s , a , s ')+γ vπ(s ')]

vπ(s)=∑
a

π(a∣s)[r (s , a)+∑
s '

p (s '∣s , a) γ vπ(s ' )]

vπ(s)=r (s ,π(s))+∑
s '

p (s '∣s ,π(s)) γ vπ(s ')

SBv2

r(s,a,s’)

r(s,a)

determ.
policy
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Iterative Policy Evaluation (IPE)

● Given that we know what the value function is... how can we compute it?
● Steps:

● 1. fix the policy π to evaluate (let’s assume deterministic) 
● 2. Take the Bellman equation… 

… and turn it into an update equation:

● 3. Initialize, v0(s)=0, for all s
● 4. Apply the update equation, in iterations, to all states

vπ(s)=r (s ,π(s))+∑
s '

p (s '∣s ,π(s)) γ vπ(s ')

vk +1(s):=r (s ,π(s))+∑
s '

p(s '∣s ,π(s)) γ v k (s ')

← use variant that is 
most  convenient

← use variant that is 
most  convenient

So, we compute a sequence
(v0, v1, v2,….)

of “k-steps-to-go” value functions
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Policy Evaluation Example 

● A little maze:
● transitions:

N,E,S,W, deterministic movements
P(s’ = terminal | s=goal, a=*)=1

● rewards: 
R(s=Goal,a=*) = +10
R(s=terminal, a=*) = 0
R(s=*, a=*) = -1            (otherwise)

● discount γ=0.9 

terminal

goalgoal
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Policy Evaluation Example 

● A little maze:
● transitions:

N,E,S,W, deterministic movements
P(s’ = terminal | s=goal, a=*)=1

● rewards: 
R(s=Goal,a=*) = +10
R(s=terminal, a=*) = 0
R(s=*, a=*) = -1            (otherwise)

● discount γ=0.9 

0

0 0 0

0 0 0

00

0
terminal

goalgoal

Initialize v0(s) = 0Initialize v0(s) = 0
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Policy Evaluation Example 

● A little maze:
● transitions:

N,E,S,W, deterministic movements
P(s’ = terminal | s=goal, a=*)=1

● rewards: 
R(s=Goal,a=*) = +10
R(s=terminal, a=*) = 0
R(s=*, a=*) = -1            (otherwise)

● discount γ=0.9 

0

0 0 0

0 0 0

00

0
terminal

goalgoal

v1(terminal) = 0v1(terminal) = 0

v1(s):=r (s , π(s))+∑
s '

p(s '∣s ,π(s)) γ v0(s ')
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Policy Evaluation Example 

● A little maze:
● transitions:

N,E,S,W, deterministic movements
P(s’ = terminal | s=goal, a=*)=1

● rewards: 
R(s=Goal,a=*) = +10
R(s=terminal, a=*) = 0
R(s=*, a=*) = -1            (otherwise)

● discount γ=0.9 

0

0 0 0

0 0 0

00

0
terminal

goalgoal

v1(goal) = …?v1(goal) = …?

v1(s):=r (s , π(s))+∑
s '

p(s '∣s ,π(s)) γ v0(s ')
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Policy Evaluation Example 

● A little maze:
● transitions:

N,E,S,W, deterministic movements
P(s’ = terminal | s=goal, a=*)=1

● rewards: 
R(s=Goal,a=*) = +10
R(s=terminal, a=*) = 0
R(s=*, a=*) = -1            (otherwise)

● discount γ=0.9 

0

0 0 10

0 0 0

00

0
terminal

goalgoal

v1(goal) = 10v1(goal) = 10

v1(s):=r (s , π(s))+∑
s '

p(s '∣s ,π(s)) γ v0(s ')
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Policy Evaluation Example 

● A little maze:
● transitions:

N,E,S,W, deterministic movements
P(s’ = terminal | s=goal, a=*)=1

● rewards: 
R(s=Goal,a=*) = +10
R(s=terminal, a=*) = 0
R(s=*, a=*) = -1            (otherwise)

● discount γ=0.9 

0

0 0 10

0 0 0

00

0
terminal

goalgoal

v1((3,2)) = … ?v1((3,2)) = … ?

v1(s):=r (s , π(s))+∑
s '

p(s '∣s ,π(s)) γ v0(s ')
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Policy Evaluation Example 

● A little maze:
● transitions:

N,E,S,W, deterministic movements
P(s’ = terminal | s=goal, a=*)=1

● rewards: 
R(s=Goal,a=*) = +10
R(s=terminal, a=*) = 0
R(s=*, a=*) = -1            (otherwise)

● discount γ=0.9 

0

0 0 10

0 0 0

-10

0
terminal

goalgoal

v1((3,2)) = -1v1((3,2)) = -1

NOTE: the updates 
                  are ‘in parallel’!
NOTE: the updates 
                  are ‘in parallel’!

v1(s):=r (s ,π (s))+∑
s '
p(s '∣s ,π (s))γ v0(s ' )
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Policy Evaluation Example 

● A little maze:
● transitions:

N,E,S,W, deterministic movements
P(s’ = terminal | s=goal, a=*)=1

● rewards: 
R(s=Goal,a=*) = +10
R(s=terminal, a=*) = 0
R(s=*, a=*) = -1            (otherwise)

● discount γ=0.9 

0

0 0 10

0 0 0

-10

0
terminal

goalgoal

remaining 
states
v1(s) = …?

remaining 
states
v1(s) = …?

v1(s):=r (s ,π (s))+∑
s '
p(s '∣s ,π (s))γ v0(s ' )
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● A little maze:
● transitions:

N,E,S,W, deterministic movements
P(s’ = terminal | s=goal, a=*)=1

● rewards: 
R(s=Goal,a=*) = +10
R(s=terminal, a=*) = 0
R(s=*, a=*) = -1            (otherwise)

● discount γ=0.9 

Policy Evaluation Example 

-1

-1 -1 10

-1 -1 -1

-1-1

0
terminal

goalgoal

remaining 
states
v1(s) = -1

remaining 
states
v1(s) = -1

v1(s):=r (s ,π (s))+∑
s '
p(s '∣s ,π (s))γ v0(s ' )
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Policy Evaluation Example 

-1

-1 -1 10

-1 -1 -1

-1-1

0
terminal

goalgoal

Have now computed 
v1, lets move to v2...
Have now computed 
v1, lets move to v2...
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Policy Evaluation Example 

-1.9

-1.9 -1.9 10

-1.9 -1.9 -1.9

8-1.9

0
terminal

goalgoal

have now computed v2

(the 2-steps-to-go value function)

have now computed v2

(the 2-steps-to-go value function)
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Policy Evaluation Example 

-2.71

-2.71 -2.71 10

-2.71 -2.71 -2.71

8-2.71

0
terminal

goalgoal

v3 is this:v3 is this:

What does this  converge to…?What does this  converge to…?
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Policy Evaluation Example 

-2.71

-2.71 -2.71 10

-2.71 -2.71 -2.71

8-2.71

0
terminal

goalgoal

v3 is this:v3 is this:
What does this  converge to…?What does this  converge to…?

∑
t=0

∞
γ t r=r

1−γ
=−1
1−0.9

=−10
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Policy Evaluation Example 

-10

-10 -10 10

-10 -10 -10

8-10

goalgoal

0
terminal

vπ=v∞ is this:vπ=v∞ is this:
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Implementational issues

● As you saw, we did “parallel updates”
● vk is the k-steps-to-go value function 

    (for following π)
● but requires 2 arrays to implement

● Can also implement in 1 array
● do updates “in place”
● also converges, and can be faster!
● but  vk  will no longer correspondence to k-steps-to-go value 
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Part 4: Computing an Optimal Policy

(Generalized) policy iteration 
to compute an optimal policy π*
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● 2 steps:
● policy evaluation: compute vπ(s)
● policy improvement: update π  π’→

● By alternating these, converge to optimal policy π*

Policy Iteration
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Policy Improvement – 1

● When we have computed vπ(s)…
...we want to use that to improve the policy!

● Let’s define the action-value function:

● expected value when selecting a at s, and following π afterwards

qπ( s , a)=∑
s ' , r

p(s ' , r∣s , a)[r+γ vπ(s ' )]
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Policy Improvement – 1

● When we have computed vπ(s)…
...we want to use that to improve the policy!

● Let’s define the action-value function:

● expected value when selecting a at s, and following π afterwards

qπ( s , a)=∑
s ' , r

p(s ' , r∣s , a)[r+γ vπ(s ' )]

different forms of vπ   → different forms of qπ  !different forms of vπ   → different forms of qπ  !

vπ (s)=∑
a

π(a∣s)∑
s ' , r

p(s ' , r∣s , a)[r+γ vπ(s ' )]
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Policy Improvement – 2

● Now, given qπ(s,a), we can improve the policy...
...by being greedy:

forall s:    π’(s)  max← a qπ(s,a)

● Then repeat:
● policy evaluation
● policy improvement

 → called policy iteration
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● Continuing with our little maze:
● convenient Q-value function:

Policy Improvement Example 

-10

-10 -10 10

-10 -10 -10

8-10

0
terminal

goalgoal

vπ:vπ:

qπ(s , a)=r (s , a)+γ∑
s '

p(s '∣s , a)vπ(s ')

q(s(2,1), N) = -1 +  .9 * -10  = -10
q(s(2,1), E) = -1 +  .9 * +10  =  +8
q(s(2,1), S) = -1 +  .9 * -10  = -10
q(s(2,1), W) = -1 +  .9 * -10  = -10
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● Continuing with our little maze:
● convenient Q-value function:

Policy Improvement Example 

-10

-10 -10 10

-10 -10 -10

8-10

0
terminal

goalgoal

vπ:vπ:

qπ(s , a)=r (s , a)+γ∑
s '

p(s '∣s , a)vπ(s ')

q(s(2,1), N) = -1 +  .9 * -10  = -10
q(s(2,1), E) = -1 +  .9 * +10  =  +8
q(s(2,1), S) = -1 +  .9 * -10  = -10
q(s(2,1), W) = -1 +  .9 * -10  = -10
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● Continuing with our little maze:
● convenient Q-value function:

Policy Improvement Example 

-10

-10 -10 10

-10 -10 -10

8-10

0
terminal

goalgoal

vπ:vπ:

qπ(s , a)=r (s , a)+γ∑
s '

p(s '∣s , a)vπ(s ')

Other updates…Other updates…
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● Continuing with our little maze:
● convenient Q-value function:

Policy Improvement Example 

6.2

3.12 8 10

3.12 4.58 6.2

84.58

0
terminal

goalgoal

vπ:vπ:

qπ(s , a)=r (s , a)+γ∑
s '

p(s '∣s , a)vπ(s ')

then: compute value vπ of 
this new policy, etc.

then: compute value vπ of 
this new policy, etc.
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Optimal policies & (action-) value functions

● So does this converge…?
● Yes! Converges to unique optimal value functions

● given by Bellman optimality equations:

● There can be multiple optimal policies
● they share the same optimal value function

v∗(s)=maxaq∗(s , a)

q∗(s , a)=∑
s ' , r

p (s ' , r∣s , a)[r+γ v∗(s ' )]
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Optimal policies & (action-) value functions

● So does this converge…?
● Yes! Converges to unique optimal value functions

● given by Bellman optimality equations:

● There can be multiple optimal policies
● they share the same optimal value function

v∗(s)=maxaq∗(s , a)

q∗(s , a)=∑
s ' , r

p (s ' , r∣s , a)[r+γ v∗(s ' )]
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Optimal policies & (action-) value functions

● So does this converge…?
● Yes! Converges to unique optimal value functions

● given by Bellman optimality equations:

● There can be multiple optimal policies
● they share the same optimal value function

v∗(s)=maxaq∗(s , a)

q∗(s , a)=∑
s ' , r

p (s ' , r∣s , a)[r+γ v∗(s ' )]

6.2

6.2 8 10

3.12 4.58 6.2

84.58

0
terminal

goalgoal

v*v*
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Generalized Policy Iteration & Value Iteration

● Is it needed to run policy evaluation until convergence…?
 → No..! Can do a few iterations of IPE, and then do policy improvement. Still works.

● Leads to “generalized policy iteration”: can approximate both policy evaluation and 
improvement

● In the extreme: value iteration
● does only 1 IPE iteration
● It combines IPE and policy improvement 

in  a single update rule:

● repeatedly sweep through 
state space, until convergence

v (s)←maxa{∑
s ' , r

p (s '∣s , a)[r (s , a , s ' )+γ v (s ' )]}
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Summary so far

● Many problems are stochastic…  need feedback plans→
● MDPs model these problems

● key component: Markov assumption

● Planning aka dynamic programming:
● Finite horizon: DP over a tree / DAG
● Infinite horizon: (generalized) policy iteration
• policy evaluation ↔ policy improvement
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Part 5: What if we cannot observe the state?

Images by the U.S. National Park Service in public domain
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Example: Predator-prey MDP

● We are the blue round predator
● A={left, right, up, down}

● Prey moving stochastically
● independent of us.  (why important?)

● States…?
● relative positions. 
● E.g.: current state s=(-3,4)
● (assumes “wrap around”)
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Example: Predator-prey MDP

● But now we have limited range…
● State?

● still s=(-3,4)

● But what does the agent observe?
● current observation…? 

o=’none’
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Example: Predator-prey MDP

● But now we have limited range…
● State?

● still s=(-3,4)

● But what does the agent observe?
● current observation…? 

o=(-1,1)
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Types of Partial Observability

● Noise 
● Sensors have measurement errors.
● Sensor (or other part of the agent) can fail.

● Perceptual aliasing
● When multiple situations can't be discriminated. 
● I.e., multiple states give the same observation.

– e.g. what is behind a wall?

Image by the U.S. National Park Service in public domain.
Illustration from OpenClipart is licensed under CC0 1.0.
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Formal model: POMDP

● A Markov decision process (MDP) M=<S,A,PT ,R>
● S – set of world states s
● A – set of actions a
● PT – transition function, P(s'|s,a)
● R – reward function, R(s,a)

● A partially observable MDP (POMDP), M=<S,A,O,PT,PO,R> 
● O – set of observations o
● PO  – observation function, P(o|a, s')

● Optimality criterion typically expected (discounted) return
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Policies in P.O. environments

● Now given that the agent only gets some observations…
● what policy should he follow?
● How does such a policy even look like?

 

● No Markovian signal (i.e. the state) directly available to the agent...
➔ In general: should use all information!
➔ i.e. full history of actions and observations ht=(a0,o1,a1,…,at-1,ot)
➔ deterministic policies: observation histori
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Why not just using observations?

● Could be very bad!
● randomization can help
● and history can help more!

Example from: 

Singh, Satinder P., Tommi Jaakkola, and Michael I. Jordan. "Learning without 
state-estimation in partially observable Markovian decision processes." 

Machine Learning Proceedings 1994. Morgan Kaufmann, 1994. 284-292.
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The Tiger Problem

● States: left / right (50% prob.)
● Actions: Open left, open right, listen
● Transitions: static, but opening resets.
● Observation: Hear left, Hear right

● correct 85% of the time.
● P( HearLeft | Listen, State=left ) = 0.85
● P( HearRight | Listen, State=left ) = 0.15

● Rewards: 
● correct door +10, 
● wrong door -100
● listen -1
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The Tiger Problem

● So… when do you open the door?

● At the beginning?
● After HL ?
● After HL, HL ?
● After HL, HL, HL ?

(note: assuming “Listen” so far…!)
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Value of histories

● We act based on histories ht=(a0,o1,a1,…ot-1,at-1,ot)
● histories take the role of states…

● Indeed, can define a history MDP !
● MHistMDP=<H,A,T,R>

● And this leads to value functions:
● Q(h,a) = R(h,a) + Σo P(h’=<h,a,o>|h,a) V(h’)
● V(h’) = maxa’ Q(h’,a’)

● How are R(h,a) and 
T(h’|h,a) defined?

 → expectations over the 
underlying states!
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Solving POMDPs

● So we have found a recipe for dealing with POMDPs!
● For a finite horizon:

● generate the (look-ahead) tree 
of all action-observation histories

● perform dynamic programming 
on this tree

● Problem: 
too many action-observation histories!
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From histories → beliefs

● One would hope: not every history needs different treatment…? 

● In the end, it is the states that determine the rewards.

● Suppose for horizon T, we are at the last time step t=T-1…
● Q(hT-1, a) = R(hT-1, a) =  Σs P(s | hT-1) R(s, a)
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From histories → beliefs

● One would hope: not every history needs different treatment…? 

● In the end, it is the states that determine the rewards.

● Suppose for horizon T, we are at the last time step t=T-1…
● Q(hT-1, a) = R(hT-1, a) =  Σs P(s | hT-1) R(s, a)

● posterior prob. over states, 
● called belief, also b(s)
● sufficient to define the value for T-1
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Beliefs are ‘sufficient statistics’

● Turns out, that beliefs b(s)  P(s |h≜ t )
are sufficient to define the value functions for all stages t

● I.e, we can write
● Q(b,a) = R(b,a) + Σ P(b’|b, a) V(b’)
● V(b’) = maxa’ Q(b’,a’)
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Using beliefs to solve POMDPs

● OK, so now what?
● Can define “belief MDP”, tree of (reachable) beliefs
● Q: how does that help...?

● A: many histories can correspond to the same belief!
● tree  DAG (directed acyclic graph)→

● Alternative: plan for the continuum of all possible beliefs…!
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DP by Exploiting the PWLC property

● Rewards are vectors
● R(., OR) = [10, -100]
● R(., Li) = [-1, 1]
● R(., OL) = [-100, 10]

● Can perform DP with
these vectors
● E.g. [Spaan 2012]

b(s=right)  →

ex
pe

ct
ed

 
re

w
ar

d 
 

→

0 1
-100

10

MTJ Spaan. Partially observable Markov decision processes. Reinforcement 
learning: State-of-the-art, 387-414, 2012
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POMDP Summary

● Many problems are partially observable
● cannot assume that observations are Markov

● Solutions
● use histories
● use beliefs

● Solution approaches: 
● Discrete belief state DP: trees, DAGs
● Continuous belief state DP: exploit PWLC structure 

There is 
a bear!

ROAR!

Image by the U.S. National Park Service in public domain.
Illustrations from OpenClipart are licensed under CC0 1.0.
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Part 6: What if we do not 
want to observe the full state?

 → Abstraction

Illustration by Nik on Unsplash
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Even MDPs are usually difficult...

● Real world problems have 
huge state spaces…

 → can we make abstractions?

● Specifically,  we consider state abstractions
▹ function φ(s) that maps state s  abstract state → φ Suau, Miguel, et al. "Distributed influence-augmented local simulators for 

parallel MARL in large networked systems." Advances in Neural Information 
Processing Systems 35 (2022): 28305-28318.
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Abstractions partition the state space

● Abstract state φ = cluster of states
● What are good abstractions?
● how to cluster…?

 

● Different types of abstractions:
● φ0  — identity (i.e., no abstraction) 
● φm — model irrelevance, preserve R,T

▹ φΠ — QΠ irrelevance (for all π Π), preserves Q-values∊

▹ φQ* — Q* irrelevance, preserves all optimal Q-values
▹ φa* — a* irrelevance, preserve Q(., a*)
▹ φπ* — π* irrelevance, preserves optimal action

 

■ Hierarchy: 
           φ0 ISA φm ISA φΠ ISA φQ* ISA φQ* ISA φa* ISA φπ*

Li, Lihong, Thomas J. Walsh, and Michael L. Littman. "Towards a unified theory of 
state abstraction for MDPs." AI&M 1.2 (2006): 3.

coarser
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Abstract MDPs

● Given and MDP and some  φ…. 
….can create an abstract MDP:

● Weighting function ωφ(s) 
▹ specifies the assumed state probabilities 
▹ for each abstract state φ

 

● Transitions:
    T(φ’|φ,a) = Σs’  φ’∈  Σs  φ∈  T(s’|s,a) ωφ(s)

● Rewards:
    R(φ,a) = Σs  φ∈  R(s,a) ωφ(s)
 

● Under some assumptions (‘ε-model similarity abstraction’): value loss bounded.
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Abstraction as a POMDP

● Abstraction can be thought of as a POMDP!
● abstract states are observations:   φ ↔ o
● myopic decisions in these POMDPs can be good!

■ When entering φ, there is a distribution over states
▹ there is a true belief, that depends on history ht=(φ0,a0,…,at-1,φt)

■  ωφ(s)  approximates that belief 
▹ in a non-history dependent way

 → an Abstract MDP is an MDP
 → an Abstract MDP can be constructed and used for planning, it can not be ‘experienced’ 
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Conclusions

● Many problems are sequential and stochastic  model as MDPs→
● ‘Solving’ MDPs

● finite horizon: ‘plain’ dynamic progamming
● infinite horizon: (generalized) policy iteration

● Partial observable problems…  POMDPs→
● Large problems: state abstraction…

● are making the problem a POMDP! 

There is 
a bear!

ROAR!

Image by the U.S. National Park Service in public domain.
Illustrations from OpenClipart are licensed under CC0 1.0.
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Policy Evaluation Example 

● A little maze:
● transitions:

N,E,S,W, deterministic movements
P(s’ = terminal | s=goal, a=*)=1

● rewards: 
R(s=Goal,a=*) = +10
R(s=terminal, a=*) = 0
R(s=*, a=*) = -1            (otherwise)

● discount γ=0.9 

terminal

goalgoal
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Policy Evaluation Example 

● A little maze:
● transitions:

N,E,S,W, deterministic movements
P(s’ = terminal | s=goal, a=*)=1

● rewards: 
R(s=Goal,a=*) = +10
R(s=terminal, a=*) = 0
R(s=*, a=*) = -1            (otherwise)

● discount γ=0.9 

terminal

goalgoal

when hitting a wall
we stay in place

when hitting a wall
we stay in place
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Policy Evaluation Example 

● A little maze:
● transitions:

N,E,S,W, deterministic movements
P(s’ = terminal | s=goal, a=*)=1

● rewards: 
R(s=Goal,a=*) = +10
R(s=terminal, a=*) = 0
R(s=*, a=*) = -1            (otherwise)

● discount γ=0.9 

terminal

goalgoal

First step…?First step…?
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Policy Evaluation Example 

● A little maze:
● transitions:

N,E,S,W, deterministic movements
P(s’ = terminal | s=goal, a=*)=1

● rewards: 
R(s=Goal,a=*) = +10
R(s=terminal, a=*) = 0
R(s=*, a=*) = -1            (otherwise)

● discount γ=0.9 

0

0 0 0

0 0 0

00

0
terminal

goalgoal

Initialize v0(s) = 0Initialize v0(s) = 0
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Policy Evaluation Example 

● A little maze:
● transitions:

N,E,S,W, deterministic movements
P(s’ = terminal | s=goal, a=*)=1

● rewards: 
R(s=Goal,a=*) = +10
R(s=terminal, a=*) = 0
R(s=*, a=*) = -1            (otherwise)

● discount γ=0.9 

0

0 0 0

0 0 0

00

0
terminal

goalgoal

Let’s start 
updating...
Let’s start 
updating...

v1(s):=r (s , π(s))+∑
s '

p(s '∣s ,π(s)) γ v0(s ')
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Policy Evaluation Example 

● A little maze:
● transitions:

N,E,S,W, deterministic movements
P(s’ = terminal | s=goal, a=*)=1

● rewards: 
R(s=Goal,a=*) = +10
R(s=terminal, a=*) = 0
R(s=*, a=*) = -1            (otherwise)

● discount γ=0.9 

0

0 0 0

0 0 0

00

0
terminal

goalgoal

v1(terminal) = 
… ?
v1(terminal) = 
… ?

v1(s):=r (s , π(s))+∑
s '

p(s '∣s ,π(s)) γ v0(s ')



99MDPs, POMDPs, Abstractions

Policy Evaluation Example 

● A little maze:
● transitions:

N,E,S,W, deterministic movements
P(s’ = terminal | s=goal, a=*)=1

● rewards: 
R(s=Goal,a=*) = +10
R(s=terminal, a=*) = 0
R(s=*, a=*) = -1            (otherwise)

● discount γ=0.9 

0

0 0 0

0 0 0

00

0
terminal

goalgoal

v1(terminal) = 0v1(terminal) = 0

v1(s):=r (s , π(s))+∑
s '

p(s '∣s ,π(s)) γ v0(s ')
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Policy Evaluation Example 

● A little maze:
● transitions:

N,E,S,W, deterministic movements
P(s’ = terminal | s=goal, a=*)=1

● rewards: 
R(s=Goal,a=*) = +10
R(s=terminal, a=*) = 0
R(s=*, a=*) = -1            (otherwise)

● discount γ=0.9 

0

0 0 0

0 0 0

00

0
terminal

goalgoal

v1(goal) = …?v1(goal) = …?

v1(s):=r (s , π(s))+∑
s '

p(s '∣s ,π(s)) γ v0(s ')
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Policy Evaluation Example 

● A little maze:
● transitions:

N,E,S,W, deterministic movements
P(s’ = terminal | s=goal, a=*)=1

● rewards: 
R(s=Goal,a=*) = +10
R(s=terminal, a=*) = 0
R(s=*, a=*) = -1            (otherwise)

● discount γ=0.9 

0

0 0 10

0 0 0

00

0
terminal

goalgoal

v1(goal) = 10v1(goal) = 10

v1(s):=r (s , π(s))+∑
s '

p(s '∣s ,π(s)) γ v0(s ')
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Policy Evaluation Example 

● A little maze:
● transitions:

N,E,S,W, deterministic movements
P(s’ = terminal | s=goal, a=*)=1

● rewards: 
R(s=Goal,a=*) = +10
R(s=terminal, a=*) = 0
R(s=*, a=*) = -1            (otherwise)

● discount γ=0.9 

0

0 0 10

0 0 0

00

0
terminal

goalgoal

v1((3,2)) = … ?v1((3,2)) = … ?

v1(s):=r (s , π(s))+∑
s '

p(s '∣s ,π(s)) γ v0(s ')
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Policy Evaluation Example 

● A little maze:
● transitions:

N,E,S,W, deterministic movements
P(s’ = terminal | s=goal, a=*)=1

● rewards: 
R(s=Goal,a=*) = +10
R(s=terminal, a=*) = 0
R(s=*, a=*) = -1            (otherwise)

● discount γ=0.9 

0

0 0 10

0 0 0

-10

0
terminal

goalgoal

v1((3,2)) = -1v1((3,2)) = -1

NOTE: the updates 
                  are ‘in parallel’!
NOTE: the updates 
                  are ‘in parallel’!

v1(s):=r (s , π(s))+∑
s '

p(s '∣s ,π(s)) γ v0(s ')
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Policy Evaluation Example 

● A little maze:
● transitions:

N,E,S,W, deterministic movements
P(s’ = terminal | s=goal, a=*)=1

● rewards: 
R(s=Goal,a=*) = +10
R(s=terminal, a=*) = 0
R(s=*, a=*) = -1            (otherwise)

● discount γ=0.9 

0

0 0 10

0 0 0

-10

0
terminal

goalgoal

remaining 
states
v1(s) = …?

remaining 
states
v1(s) = …?

v1(s):=r (s , π(s))+∑
s '

p(s '∣s ,π(s)) γ v0(s ')
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Policy Evaluation Example 

● A little maze:
● transitions:

N,E,S,W, deterministic movements
P(s’ = terminal | s=goal, a=*)=1

● rewards: 
R(s=Goal,a=*) = +10
R(s=terminal, a=*) = 0
R(s=*, a=*) = -1            (otherwise)

● discount γ=0.9 
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-1-1
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terminal

goalgoal

remaining 
states
v1(s) = -1

remaining 
states
v1(s) = -1

v1(s):=r (s , π(s))+∑
s '

p(s '∣s ,π(s)) γ v0(s ')
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Policy Evaluation Example 

-1

-1 -1 10

-1 -1 -1

-1-1

0
terminal

goalgoal

Have now computed 
v1, lets move to v2...
Have now computed 
v1, lets move to v2...
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Policy Evaluation Example 

-1

-1 -1 10

-1 -1 -1

-1-1

0
terminal

goalgoal

new value?new value?

v2(s):=r (s ,π(s))+∑
s '

p (s '∣s ,π(s)) γ v1(s ' )
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Policy Evaluation Example 

-1

-1 -1 10

-1 -1 -1

-1-1

0
terminal

goalgoal

new value?new value?

v2(s):=r (s ,π(s))+∑
s '

p (s '∣s ,π(s)) γ v1(s ' )
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Policy Evaluation Example 

-1

-1 -1 10

-1 -1 -1

-1-1

0
terminal

goalgoal

new value?new value?

v2(s):=r (s ,π(s))+∑
s '

p (s '∣s ,π(s)) γ v1(s ' )
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Policy Evaluation Example 
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goalgoal

new value?new value?

v2(s):=r (s ,π(s))+∑
s '

p (s '∣s ,π(s)) γ v1(s ' )
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Policy Evaluation Example 

-1

-1 -1.9 10
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goalgoal

new value?new value?

v2(s):=r (s ,π(s))+∑
s '

p (s '∣s ,π(s)) γ v1(s ' )
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Policy Evaluation Example 
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goalgoal

new value?new value?

v2(s):=r (s ,π(s))+∑
s '

p (s '∣s ,π(s)) γ v1(s ' )
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Policy Evaluation Example 

-1.9

-1 -1.9 10
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-1-1
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terminal

goalgoal

new value?new value?

v2(s):=r (s ,π(s))+∑
s '

p (s '∣s ,π(s)) γ v1(s ' )
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Policy Evaluation Example 
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-1 -1 -1

8-1

0
terminal

goalgoal

new value?new value?

v2(s):=r (s ,π(s))+∑
s '

p (s '∣s ,π(s)) γ v1(s ' )
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Policy Evaluation Example 

-1.9

-1 -1.9 10
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8-1

0
terminal

goalgoal

new value?new value?

v2(s):=r (s ,π(s))+∑
s '

p (s '∣s ,π(s)) γ v1(s ' )
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Policy Evaluation Example 

-1.9

-1 -1.9 10

-1 -1 -1.9

8-1

0
terminal

goalgoal

new value?new value?

when hitting a wall
we stay in place

when hitting a wall
we stay in place

v2(s):=r (s ,π(s))+∑
s '

p (s '∣s ,π(s)) γ v1(s ' )
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Policy Evaluation Example 

-1.9
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8-1

0
terminal

goalgoal

rest...new value?rest...new value?

v2(s):=r (s ,π(s))+∑
s '

p (s '∣s ,π(s)) γ v1(s ' )
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Policy Evaluation Example 

-1.9
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0
terminal

goalgoal

have now computed v2

(the 2-steps-to-go value function)

have now computed v2

(the 2-steps-to-go value function)
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-1.9

-1.9 -1.9 10

-1.9 -1.9 -1.9

8-1.9

0
terminal

goalgoal

how about v3...?how about v3...?
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-2.71

-2.71 -2.71 10

-2.71 -2.71 -2.71

8-2.71

0
terminal

goalgoal

v3 is this:v3 is this:
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Policy Evaluation Example 

-2.71

-2.71 -2.71 10

-2.71 -2.71 -2.71

8-2.71

0
terminal

goalgoal

v3 is this:v3 is this:

-1 + .9 * (-1) + .92 * (-1) = -2.71-1 + .9 * (-1) + .92 * (-1) = -2.71



122MDPs, POMDPs, Abstractions

Policy Evaluation Example 

-2.71

-2.71 -2.71 10

-2.71 -2.71 -2.71

8-2.71

0
terminal

goalgoal

v3 is this:v3 is this:
What does this  converge to…?What does this  converge to…?
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Policy Evaluation Example 

-2.71

-2.71 -2.71 10

-2.71 -2.71 -2.71

8-2.71

0
terminal

goalgoal

v3 is this:v3 is this:
What does this  converge to…?What does this  converge to…?

∑
t=0

∞

γt r=r
1−γ

=−1
1−0.9

=−10
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-10

-10 -10 10

-10 -10 -10

8-10

goalgoal

0
terminal

vπ=v∞ is this:vπ=v∞ is this:
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