Spring School on Control Theory and Reinforcement Learning

CWI Research Semester Programme on Control Theory and Reinforcement Learning: Connections and Challenges

Markov decision processes, Generalized policy iteration, partial observability, abstractions

Frans A. Oliehoek

Part 1: Recap of stochastic sequential decision making problems ("MDPs")

MDPs, POMDPs, Abstractions

Sequential stochastic problems

- Many problems have uncertain components
 - in fastest route: traffic
 - in inventory management: sales
 - in control of a robot: noise in actuators, wheel slip, etc.
 - in maintenance: wear and tear of components

Sequential stochastic problems

- main idea:
 - discrete time steps t=0,1,2,...
 - "world" is in some state
 - and changes stochastically
- The **horizon** (*'T'*) of the problem: how many steps
 - can be finite or infinite

Example: walk the cliff

- Actions:
 - Up, Down, Left, Right
 - can accidentally move to other direction
- States: Location
 - Starting location (S)
 - Terminal States
 - G: Agent is 'reset' at S
 - C: Agent is 'reset' at S
- Between resets: 1 "episode"
- Preferences with "rewards"
 - 10 for getting to the goal (G)
 - -100 for walking/falling into the cliff (C)

Policies

- So how should such policies π look like...?
 - clearly need to condition on states...
 - but they could depend on histories...?
 - they could randomize...?

- For the problems we will consider **
 it is a mapping from state to action: π(s) = a
 - Randomization and history are not needed
 - But a policy is a **feedback plan**, not an 'open loop' plan

Stochastic changes of the world

- State transition function T(s,a,s')
 - Defines the world's reactions to the agent's actions
- Markov assumption:

Effect of actions depends only on current state:

$$P(s_t | s_{t-1} a_{t-1} s_{t-2} a_{t-2}) = P(s_t | s_{t-1} a_{t-1})$$

It is a very strong assumption!

- \rightarrow state has enough information to predict the future
- everything I need to know can be observed
- do not need to remember anything...

Goal ('optimality criterion')

- Optimality criterion: which policy π is best?
- Commonly: optimize long-term (sum of) rewards ('**return**'):
 - finite horizon task:
 - continuing task:
 - discount factor y in [0,1)

$$G = R_1 + R_2 + \dots + R_T$$

$$G = R_1 + \gamma R_2 + \gamma^2 R_3 + \dots$$

• Expected return, often called **value**: $V(\pi) = E [G | policy = \pi]$

Value Functions

- We will want to express rewards **from stage** *t* **onwards**:
 - episodic / finite horizon:
 - continuing / infinite horizon:

 $G_{t} = R_{t+1} + R_{t+2} + \dots + R_{T}$ $G_{t} = R_{t+1} + \gamma R_{t+2} + \gamma^{2} R_{t+3} \dots$

- Now, expected (discounted) return:
 - when acting according to policy $\boldsymbol{\pi}$
 - is expressed by the value function of π: ("cost-to-go")

$$V_{\pi}(s) = E_{\pi} [G_{t} | S_{t} = s]$$

Putting it together: MDPs

- A Markov decision process (MDP) *M*=<*S*,*A*,*T*,*R*>
 - S set of world states s
 - A set of actions a
 - T transition function
 - specifies p(s'|s,a)
 - enables: outcome uncertainty
 - R reward function
 - Task encoded by rewards R(s,a,s')
 - also R(s,a) or R(s')

Sutton&Barto V2: combine both into a single function p(s',r|s,a)

S

а

s→s′,r

- makes explicit stochastic rewards
- can convert this to deterministic reward function: take expectation (cf. p49 SBv2)
- Optimality criterion: expected (discounted) return

Part 2: finite horizon dynamic programming (on trees)

Planning for a finite horizon

- We will only plan for T time steps
 - Finite horizon problem, or
 - online ("lookahead") planning
- Just apply "maximum expected utility"
 - but exploit temporal structure in computation ("dynamic programming")

Dynamic Programming – limitations

- Problem: trees get huge... \rightarrow not practical
 - One solution: sampling (e.g., MCTS)
- But first... how about caching?

MDPs, POMDPs, Abstractions

MDPs, POMDPs, Abstractions

MDPs, POMDPs, Abstractions

MDPs, POMDPs, Abstractions

t=T

MDPs, POMDPs, Abstractions

MDPs, POMDPs, Abstractions

Summarizing so far...

- MDPs formalize decision making in stochastic environment
- For finite horizon it is easy to use dynamic programming: exploit temporal structure
 - DP on tree of trajectories, great given infinite computation
 - In general: use DAGs compute from t=T back to 0

Quiz

- Which are correct?
 - DP exploits temporal structure
 - DP on trees depends on the Markov property
 - DP on DAGs is linear in the horizon
 - DP is linear in the number of states

Next: Infinite horizon problems?

- Given an MDP <*S*,*A*,*T*,*R*> with **discounted returns**
 - **compute** a policy π that optimizes value $V(\pi)$
- (Generalized) policy iteration:
 - 1) pick an arbitrary π
 - 2) compute its value function $v_{\pi}(s)$
 - 3) use the value function to find a better policy π'
 - 4) $\pi \leftarrow \pi'$, goto 2).

Part 3: the value of a policy

We will focus on a **fixed (arbitrary) policy** π

MDPs, POMDPs, Abstractions

Fixing the Policy

An MDP graphically

- Fixing the policy...
 - ▷ agent will always select $a=\pi(s)$
 - Induces a "Markov reward process"

So what is the value of a particular policy?

- How can we compute $v_{\pi}(s) = E_{\pi} [G_t | S_t = s]$?
- It satisfies the **Bellman equation**:

$$v_{\pi}(s) = \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) [r + \gamma v_{\pi}(s')]$$

- How to solve? How to do "**policy evaluation**"?
- Two options:
 - linear system of |S| equations, with |S| unknowns.
 - iterative policy evaluation

So what is the value of a particular policy?

- How can we compute **Different forms of the Bellman equation**.
- It satisfies the **Bellm**

$$v_{\pi}(s) = \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) [r + \gamma v_{\pi}(s')]$$
 SBv2

$$v_{\pi}(s) = \sum_{a} \pi |v_{\pi}(s) = \sum_{a} \pi(a|s) \sum_{s'} p(s'|s, a) [r(s, a, s') + \gamma v_{\pi}(s')]$$
 r(s,a,s')

- How to solve? How to
- Two options:
 - linear system of |S| ec v_{π}
 - iterative policy evaluat

 $v_{\pi}(s) = \sum_{a} \pi(a|s)[r(s,a) + \sum_{s'} p(s'|s,a) \gamma v_{\pi}(s')]$ r(s,a)

$$| ec v_{\pi}(s) = r(s, \pi(s)) + \sum_{s'} p(s'|s, \pi(s)) \gamma v_{\pi}(s')$$
determ.
policy

all of these lead to the same result.

Iterative Policy Evaluation (IPE)

- Given that we know what the value function *is...* how can we compute it?
- Steps:
 - 1. fix the policy π to evaluate (let's assume deterministic)
 - 2. Take the Bellman equation...

$$v_{\pi}(s) = r(s, \pi(s)) + \sum_{s'} p(s'|s, \pi(s)) \gamma v_{\pi}(s')$$

← use variant that is most convenient

... and turn it into an update equation:

$$v_{k+1}(s) := r(s, \pi(s)) + \sum_{s'} p(s'|s, \pi(s)) \gamma v_k(s')$$

So, we compute a sequence $(v_0, v_1, v_2,...)$

- 3. Initialize, $v_0(s)=0$, for all s
- 4. Apply the update equation, in iterations, to all state

of "k-steps-to-go" value functions

Policy Evaluation Example

- A little maze:
 - transitions:

N,E,S,W, deterministic movements P(s' = terminal | s=goal, a=*)=1

- rewards: R(s=Goal,a=*) = +10 R(s=terminal, a=*) = 0 R(s=*, a=*) = -1 (otherwise)
- discount y=0.9

Policy Evaluation Example

- A little maze:
 - transitions:

N,E,S,W, deterministic movements P(s' = terminal | s=goal, a=*)=1

- rewards: R(s=Goal,a=*) = +10 R(s=terminal, a=*) = 0 R(s=*, a=*) = -1 (otherwise)
- discount γ=0.9

Policy Evaluation Example

- A little maze:
 - transitions:

N,E,S,W, deterministic movements P(s' = terminal | s=goal, a=*)=1

- rewards: R(s=Goal,a=*) = +10 R(s=terminal, a=*) = 0 R(s=*, a=*) = -1 (otherwise)
- discount y=0.9

e

$$v_1(s) := r(s, \pi(s)) + \sum_{s'} p(s'|s, \pi(s)) \gamma v_0(s')$$

Policy Evaluation Example

- A little maze:
 - transitions:

N,E,S,W, deterministic movements P(s' = terminal | s=goal, a=*)=1

- rewards: R(s=Goal,a=*) = +10 R(s=terminal, a=*) = 0 R(s=*, a=*) = -1 (otherwise)
- discount y=0.9

$$v_1(s) := r(s, \pi(s)) + \sum_{s'} p(s'|s, \pi(s)) \gamma v_0(s')$$

have now computed v_2 (the 2-steps-to-go value function)

What does this converge to...?

$$\sum_{t=0}^{\infty} \gamma^{t} r = \frac{r}{1-\gamma} = \frac{-1}{1-0.9} = -10$$

Implementational issues

- As you saw, we did "parallel updates"
 - *V_k* is the *k-steps-to-go* value function (for following π)
 - but requires 2 arrays to implement
- Can also implement in 1 array
 - do updates "in place"
 - also converges, and can be faster!
 - but *v_k* will no longer correspondence to k-steps-to-go value

Part 4: Computing an Optimal Policy

(Generalized) policy iteration to compute an optimal policy π^*

Policy Iteration

- 2 steps:
 - policy evaluation: compute $v_{\pi}(s)$
 - policy improvement: update $\pi \rightarrow \pi'$
- By alternating these, converge to optimal policy π^{\star}

Policy Improvement - 1

- When we have computed $v_{\pi}(s)$we want to use that to **improve** the policy!
- Let's define the **action-value function**:

$$q_{\pi}(s, a) = \sum_{s', r} p(s', r|s, a) [r + \gamma v_{\pi}(s')]$$

• expected value when selecting *a* at *s*, and following π afterwards

Policy Improver different forms of $v_{\pi} \rightarrow$ different forms of q_{π} !

• When we have comp ...we want to use that

$$v_{\pi}(s) = \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a)[r+\gamma v_{\pi}(s')]$$

• Let's define the **actio**

$$q_{\pi}(s, a) = \sum_{s', r} p(s', r|s, a)[r + \gamma v_{\pi}(s')]$$

• expected value when selecting *a* at *s*, and following π afterwards

MDPs, POMDPs, Abstractions

t=T-1

+2

t=T

Policy Improvement - 2

Now, given q_π(s,a), we can improve the policy...
 ...by being greedy:

forall s: $\pi'(s) \leftarrow \max_a q_{\pi}(s,a)$

- Then repeat:
 - policy evaluation
 - policy improvement

→ called **policy iteration**

- Continuing with our little maze:
 - convenient Q-value function:

 $q_{\pi}(s, a) = r(s, a) + \gamma \sum_{s'} p(s'|s, a) v_{\pi}(s')$

q(s(2,1),	N) = -1 +	.9 * -10	= -10
q(s(2,1),	E) = -1 +	.9 * +10	= +8
q(s(2,1),	S) = -1 +	.9 * -10	= -10
q(s(2,1),	W) = -1 +	.9 * -10	= -10

- Continuing with our little maze:
 - convenient Q-value function:

 $q_{\pi}(s, a) = r(s, a) + \gamma \sum_{s'} p(s'|s, a) v_{\pi}(s')$

q(s(2,1),	N) = -1 +	.9 * -10	= -10
q(s(2,1),	E) = -1 +	.9 * +10	= +8
q(s(2,1),	S) = -1 +	.9 * -10	= -10
q(s(2,1),	W) = -1 +	.9 * -10	= -10

- Continuing with our little maze:
 - convenient Q-value function:

 $q_{\pi}(s, a) = r(s, a) + \gamma \sum_{s'} p(s'|s, a) v_{\pi}(s')$

Other updates...

- Continuing with our little maze:
 - convenient Q-value function:

 $q_{\pi}(s, a) = r(s, a) + \gamma \sum_{s'} p(s'|s, a) v_{\pi}(s')$

then: compute value v_{π} of this new policy, etc.

MDPs, POMDPs, Abstractions

Optimal policies & (action-) value functions

• So does this converge...?

Optimal policies & (action-) value functions

- So does this converge...?
- Yes! Converges to unique optimal value functions
 - given by **Bellman optimality equations**:

$$v_*(s) = max_aq_*(s, a)$$

$$q_*(s, a) = \sum_{s', r} p(s', r|s, a)[r + \gamma v_*(s')]$$

- There can be multiple optimal policies
 - they share the same optimal value function

Optimal policies & (action-) value functions

- So does this converge...?
- Yes! Converges to unique optimal value fu
 - given by **Bellman optimality equations**:

$$v_*(s) = max_aq_*(s, a)$$

$$q_*(s, a) = \sum_{s', r} p(s', r|s, a)[r + \gamma v_*(s')]$$

- There can be multiple optimal policies
 - they share the same optimal value function

Generalized Policy Iteration & Value Iteration

- Is it needed to run policy evaluation until convergence...?
 → No..! Can do a few iterations of IPE, and then do policy improvement. Still works.
- Leads to "generalized policy iteration": can approximate both policy evaluation and improvement
- In the extreme: **value iteration**
 - does only 1 IPE iteration
 - It combines IPE and policy improvement in a single update rule:

$$v(s) \leftarrow max_a \{ \sum_{s',r} p(s'|s,a) [r(s,a,s') + \gamma v(s')] \}$$

• repeatedly sweep through state space, until convergence

Summary so far

- Many problems are stochastic... → need feedback plans
- MDPs model these problems
 - key component: Markov assumption
- Planning aka dynamic programming:
 - Finite horizon: DP over a tree / DAG
 - Infinite horizon: (generalized) policy iteration
 - policy evaluation ↔ policy improvement

Part 5: What if we cannot observe the state?

Images by the U.S. National Park Service in public domain

Example: Predator-prey MDP

- We are the blue round predator
 - A={left, right, up, down}
- Prey moving stochastically
 - independent of us. (why important?)
- States...?
 - relative positions.
 - E.g.: current state s=(-3,4)
 - (assumes "wrap around")

Example: Predator-prey MDP

- But now we have limited range...
- State?
 - still s=(-3,4)
- But what does the agent observe?
- current observation...?

Example: Predator-prey MDP

- But now we have limited range...
- State?
 - still s=(-3,4)
- But what does the agent observe?
- current observation...?

Types of Partial Observability

• Noise

- Sensors have measurement errors.
- Sensor (or other part of the agent) can fail.
- Perceptual aliasing
 - When multiple situations can't be discriminated.
 - I.e., multiple states give the same observation.

- e.g. what is behind a wall?

Image by the U.S. National Park Service in public domain. Illustration from OpenClipart is licensed under CC0 1.0.

Formal model: POMDP

- A Markov decision process (MDP) *M*=<*S*,*A*,*P*_T,*R*>
 - *S* set of world states s
 - A set of actions a
 - P_T transition function, P(s'|s,a)
 - *R* reward function, R(s,a)
- A partially observable MDP (POMDP), *M*=<*S*,*A*,*O*,*P*_T,*P*_O,*R*>
 - *O* set of observations *o*
 - *P*_o observation function, P(o|a, s')
- Optimality criterion typically expected (discounted) return

Policies in P.O. environments

- Now given that the agent only gets some observations...
 - what policy should he follow?
 - How does such a policy even look like?
- No Markovian signal (i.e. the state) directly available to the agent...
 - In general: should use all information!
 - → i.e. full history of actions and observations $h_t = (a_0, o_1, a_1, ..., a_{t-1}, o_t)$
 - deterministic policies: observation histori

Why not just using observations?

- Could be very bad!
 - randomization can help
 - and history can help more!

Singh, Satinder P., Tommi Jaakkola, and Michael I. Jordan. "Learning without state-estimation in partially observable Markovian decision processes." Machine Learning Proceedings 1994. Morgan Kaufmann, 1994. 284-292.

Figure 1: Need for Stochastic Policies. This figure shows a POMDP for which the optimal stationary policy is stochastic. The underlying MDP has 2 states and 2 actions A and B. The payoff for each transition, Ror -R, is labeled along the transition. The agent sees only one observation. The ellipse around the states 1aand 1b indicate that both states yield the same obser-

MDPs, POMDPs, Abstr vation. This figure is used to prove Facts 1 to 4.

The Tiger Problem

- States: left / right (50% prob.)
- Actions: Open left, open right, listen
- Transitions: static, but opening resets.
- Observation: Hear left, Hear right
 - correct 85% of the time.
 - P(HearLeft | Listen, State=left) = 0.85
 - P(HearRight | Listen, State=left) = 0.15
- Rewards:
 - correct door +10,
 - wrong door -100
 - listen -1

The Tiger Problem

- So... when do you open the door?
 - At the beginning?
 - After HL?
 - After HL, HL?
 - After HL, HL, HL?

(note: assuming "Listen" so far...!)

Value of histories

- We act based on histories $h_t = (a_0, o_1, a_1, ..., o_{t-1}, a_{t-1}, o_t)$
 - histories take the role of states...
- Indeed, can define a **history MDP** !
 - *M*_{*HistMDP*}=<*H*,*A*,*T*,*R*>
- And this leads to value functions:
 - $Q(h,a) = R(h,a) + \Sigma_o P(h' = \langle h, a, o \rangle | h, a) V(h')$
 - $V(h') = max_{a'} Q(h',a')$

 How are R(h,a) and T(h'|h,a) defined?
 → expectations over the underlying states!

Solving POMDPs

- So we have found a recipe for dealing with POMDPs!
- For a finite horizon:
 - generate the (look-ahead) tree of all action-observation histories
 - perform dynamic programming on this tree
- Problem: too many action-observation histories!

From histories → beliefs

- One would hope: not every history needs different treatment...?
- In the end, it is the states that determine the rewards.
- Suppose for horizon T, we are at the last time step t=T-1...
 - $Q(h_{T-1}, a) = R(h_{T-1}, a) = \Sigma_s P(s | h_{T-1}) R(s, a)$

From histories → beliefs

- One would hope: not every history needs different treatment...?
- In the end, it is the states that determine the rewards.
- Suppose for horizon T, we are at the last time step t=T-1...
 - $Q(h_{T-1}, a) = R(h_{T-1}, a) = \Sigma_s P(s | h_{T-1}) R(s, a)$

- posterior prob. over states,
- called **belief**, also b(s)
- sufficient to define the value for T-1

Beliefs are 'sufficient statistics'

- Turns out, that beliefs $b(s) \triangleq P(s \mid h_t)$ are sufficient to define the value functions for all stages t
- I.e, we can write
 - $Q(b,a) = R(b,a) + \Sigma P(b' | b, a) V(b')$
 - $V(b') = max_{a'}Q(b',a')$

Using beliefs to solve POMDPs

- OK, so now what?
 - Can define "belief MDP", tree of (reachable) beliefs
 - Q: how does that help...?
- A: many histories can correspond to the same belief!
 - tree \rightarrow DAG (directed acyclic graph)
- Alternative: plan for the continuum of all possible beliefs...!

DP by Exploiting the PWLC property

- Rewards are vectors
 - R(., OR) = [10, -100]
 - R(., Li) = [-1, 1]
 - R(., OL) = [-100, 10]
- Can perform DP with these vectors
 - E.g. [Spaan 2012]

MTJ Spaan. Partially observable Markov decision processes. Reinforcement learning: State-of-the-art, 387-414, 2012 MDPc

POMDP Summary

- Many problems are partially observable
 - cannot assume that observations are Markov
- Solutions
 - use histories
 - use beliefs
- Solution approaches:
 - Discrete belief state DP: trees, DAGs
 - Continuous belief state DP: exploit PWLC structure

Image by the U.S. National Park Service in public domain.
 Illustrations from OpenClipart are licensed under CC0 1.0.

Part 6: What if we do not want to observe the full state?

→ Abstraction

Illustration by Nik on Unsplash

Even MDPs are usually difficult...

- Real world problems have **huge state spaces**...
 - \rightarrow can we make abstractions?

- Specifically, we consider **state abstractions**
 - ▷ function $\varphi(s)$ that maps state $s \rightarrow$ abstract state φ

Suau, Miguel, et al. "Distributed influence-augmented local simulators for parallel MARL in large networked systems." Advances in Neural Information Processing Systems 35 (2022): 28305-28318.

Abstractions partition the state space

- Abstract state φ = cluster of states
 - What are good abstractions?
 - how to cluster...?
- Different types of abstractions:
 - ϕ_0 identity (i.e., no abstraction)
 - * ϕ_m model irrelevance, preserve R,T
 - $^{\triangleright} \quad \phi_{\Pi} Q^{\Pi}$ irrelevance (for all $\pi \in \Pi$), preserves Q-values
 - $ho = \phi_{Q^*} Q^*$ irrelevance, preserves all optimal Q-values
 - $^{
 ho}$ ϕ_{a^*} a* irrelevance, preserve Q(., a*)
 - $^{\scriptscriptstyle \triangleright} ~~ \phi_{\pi^\star} \pi^\star$ irrelevance, preserves optimal action
- Hierarchy:

 $\phi_0 \, ISA \, \phi_m \, ISA \, \phi_{\Box} \, ISA \, \phi_{Q^*} \, ISA \, \phi_{Q^*} \, ISA \, \phi_{a^*} \, ISA \, \phi_{\pi^*}$

A Lihong, Thomas J. Walsh, and Michael L. Littman. "Towards a unified theory of Total Detration for MDPs." AI&M 1.2 (2006): 3. MDPs, POMDPs, Abstractions

 \cap

coars

Abstract MDPs

- Given and MDP and some φ....
 can create an **abstract MDP**:
- Weighting function $\omega_{\phi}(s)$
 - specifies the assumed state probabilities
 - $^{\triangleright} \quad \text{ for each abstract state } \phi$
- Transitions:

 $\mathsf{T}(\phi' \,|\, \phi, a) = \Sigma_{s' \,\in\, \phi'} \, \Sigma_{s \,\in\, \phi} \, \mathsf{T}(s' \,|\, s, a) \, \omega_{\phi}(s)$

• Rewards:

 $\mathsf{R}(\phi,a) = \Sigma_{s \in \phi} \mathsf{R}(s,a) \omega_{\phi}(s)$

• Under some assumptions ('ε-model similarity abstraction'): value loss bounded.

Abstraction as a POMDP

- Abstraction can be thought of as a POMDP!
 - abstract states are observations: $\varphi \leftrightarrow o$
 - myopic decisions in these POMDPs can be good!
- When entering φ , there is a distribution over states
 - b there **is** a true belief, that depends on history $h_t = (\varphi_0, \alpha_0, ..., \alpha_{t-1}, \varphi_t)$
- $\omega_{\varphi}(s)$ approximates that belief
 - in a non-history dependent way
 - \rightarrow an Abstract MDP is an MDP
 - → an Abstract MDP can be constructed and used for planning, **it can not be 'experienced'**

Conclusions

- Many problems are sequential and stochastic \rightarrow model as MDPs
- 'Solving' MDPs
 - finite horizon: 'plain' dynamic progamming
 - infinite horizon: (generalized) policy iteration
- Partial observable problems... \rightarrow POMDPs
- Large problems: state abstraction...
 - are making the problem a POMDP!

Image by the U.S. National Park Service in public domain. Illustrations from OpenClipart are licensed under CC0 1.0.

Policy Evaluation Example

- A little maze:
 - transitions:

N,E,S,W, deterministic movements P(s' = terminal | s=goal, a=*)=1

- rewards: R(s=Goal,a=*) = +10 R(s=terminal, a=*) = 0 R(s=*, a=*) = -1 (otherwise)
- discount y=0.9

goal

Policy Evaluation Example

- A little maze:
 - transitions:

N,E,S,W, deterministic movements P(s' = terminal | s=goal, a=*)=1

- rewards: R(s=Goal,a=*) = +10 R(s=terminal, a=*) = 0 R(s=*, a=*) = -1 (otherwise)
- discount y=0.9

First step ...?

Policy Evaluation Example

- A little maze:
 - transitions:

N,E,S,W, deterministic movements P(s' = terminal | s=goal, a=*)=1

- rewards: R(s=Goal,a=*) = +10 R(s=terminal, a=*) = 0 R(s=*, a=*) = -1 (otherwise)
- discount y=0.9

Initialize $v_0(s) = 0$

MDPs, POMDPs, Abstractions

Policy Evaluation Example

Policy Evaluation Example

- A little maze:
 - transitions:

N,E,S,W, deterministic movements P(s' = terminal | s=goal, a=*)=1

- rewards: R(s=Goal,a=*) = +10 R(s=terminal, a=*) = 0 R(s=*, a=*) = -1 (otherwise)
- discount y=0.9

e

$$v_1(s) := r(s, \pi(s)) + \sum_{s'} p(s'|s, \pi(s)) \gamma v_0(s')$$

goal

MDPs, POMDPs, Abstractions

Delft

MDPs, POMDPs, Abstractions

have now computed v_2 (the 2-steps-to-go value function)

MDPs, POMDPs, Abstractions

Policy Evaluation Example

how about $v_3...?$

MDPs, POMDPs, Abstractions

Policy Evaluation Example

Policy Evaluation Example

