
The Actors and The Critics:
Function Approximations and Policy Gradients in Reinforcement Learning

Debabrota Basu
debabrota-basu.github.io

Spring School on Control Theory and Reinforcement Learning
CWI Amsterdam, 2025

https://debabrota-basu.github.io/

PART 1

Revisiting MDPs and RL Algorithms

PART 1: Revisiting MDPs and RL

Reinforcement Learning: The Philosophy

RL: sequentially learning to take optimal decisions under uncertainty.

State and Observation
from the system

Cost
at time t

Intervention
at time t

Farm

The goal of the agent is to compute a policy or strategy that maximises the reward accumulated over a time
horizon.

Basu The Actors and The Critics 1 / 34

PART 1: Revisiting MDPs and RL

Formalism of the Environment: Markov Decision Processes

A Markov Decision Process (MDP) is a tupleM ≜ ⟨S,A,P,R, γ⟩

▶ State: s ∈ S ⊆ Rd

▶ Action/Intervention/Control: a ∈ A ⊆ Rd

▶ Transition function/dynamics: P(.|s, a) induces a distribution over st+1 for st, at (previously f)

▶ Reward Function: R(.|s, a) induces a distribution over R measuring goodness of an action a at state s
(negative of cost function)

Basu The Actors and The Critics 2 / 34

PART 1: Revisiting MDPs and RL

Formalism of the Agent: Policy and Value Function

▶ Policy: A deterministic or stochastic map π(·|st) from present state st to actions

▶ How good or bas is your policy? Value Function (Negative of cost of control)

Vπ(s0) ≜
∞∑
t=0

γtRt(st, π(st))

Or, action-value functions or Q values

Qπ(s0, a0) ≜ R(s0, a0) +

∞∑
t=1

γtRt(st, π(st))

Goal: Find an optimal policy π∗ maximising Vπ(s0).

Basu The Actors and The Critics 3 / 34

PART 1: Revisiting MDPs and RL

RL: The Generic Formalism

Courtesy: Niao He, RLSS 2023

Basu The Actors and The Critics 4 / 34

PART 1: Revisiting MDPs and RL

A Generic Template of RL Algorithms: Generalised Policy Iteration

Algorithm Generalised Policy Iteration

1: Input: Initial Policy π0

2: for episode k = 1, 2, . . . do
3: Observe an initial state sk0
4: Rollouts: Collect trajectory data {r(skh, ak

h), s
k
h+1}Hh=0 and state skh+1 by playing policy πk

5: Policy Evaluation: Compute the value function of the policy Vπk (s
k
0)

6: Policy Optimisation: Use Vπk (s
k
0) to compute a better policy πk+1

7: end for
8: return policy πK .

Basu The Actors and The Critics 5 / 34

PART 1: Revisiting MDPs and RL

A Taxonomy of RL Algorithms

1 Level of interaction with the environment:

▶ Online: Sequentially learn while collecting data by interacting with the environment

▶ Offline: Use data collected in advance by some behavioural policy (e.g. Monte-Carlo methods)

2 Approach to optimal solution:

▶ Value-based RL (Off-policy): Find optimal value function V ∗
M, use it to compute π⋆

▶ Policy-based RL (On-policy): Evaluate π, improve π, and repeat

3 Knowledge of the model:

▶ Planning: R and P are known (dynamic programming)

▶ Model-based/model-predictive/model-learning: estimate R and P from data yielded through interactions

▶ Model-free: no knowledge of R and P is used– only transition data

Basu The Actors and The Critics 6 / 34

PART 1: Revisiting MDPs and RL

A Taxonomy of RL Algorithms

1 Level of interaction with the environment:

▶ Online: Sequentially learn while collecting data by interacting with the environment

▶ Offline: Use data collected in advance by some behavioural policy (e.g. Monte-Carlo methods)

2 Approach to optimal solution:

▶ Value-based RL (Off-policy): Find optimal value function V ∗
M, use it to compute π⋆

▶ Policy-based RL (On-policy): Evaluate π, improve π, and repeat

3 Knowledge of the model:

▶ Planning: R and P are known (dynamic programming)

▶ Model-based/model-predictive/model-learning: estimate R and P from data yielded through interactions

▶ Model-free: no knowledge of R and P is used– only transition data

Basu The Actors and The Critics 6 / 34

PART 1: Revisiting MDPs and RL

A Taxonomy of RL Algorithms

1 Level of interaction with the environment:

▶ Online: Sequentially learn while collecting data by interacting with the environment

▶ Offline: Use data collected in advance by some behavioural policy (e.g. Monte-Carlo methods)

2 Approach to optimal solution:

▶ Value-based RL (Off-policy): Find optimal value function V ∗
M, use it to compute π⋆

▶ Policy-based RL (On-policy): Evaluate π, improve π, and repeat

3 Knowledge of the model:

▶ Planning: R and P are known (dynamic programming)

▶ Model-based/model-predictive/model-learning: estimate R and P from data yielded through interactions

▶ Model-free: no knowledge of R and P is used– only transition data

Basu The Actors and The Critics 6 / 34

PART 1: Revisiting MDPs and RL

(Iterative) Policy Evaluation in MDPs with Discrete State-Actions

Algorithm Iterative Policy Evaluation

1: Input: A policy π, steps K
2: Initialise: value function V0(s) = 0 for all s ∈ S
3: for steps k = 1, 2, . . . ,K do
4: for states s ∈ S do
5: Using collected dataset or by rolling out π, compute the Bellman update equation

Vk(s)← T Vk−1(s) = R(s, π(s)) + γ
∑
s′∈S

P(s′|s, π(s))Vk−1(s
′) (1)

6: end for
7: end for
8: return estimated value function Vπ(s)← VK(s) for all s.

Basu The Actors and The Critics 7 / 34

PART 1: Revisiting MDPs and RL

Policy Improvement in MDPs with Discrete State-Actions → Q-value Iteration

Greedy improvement: Bellman optimality equations

Value function

V ∗
M(s) = max

a
Q∗

M(s, a)

Q-Value function

Q∗
M(s, a) = T ⋆Q∗

M(s, a) = R(s, a) +
∑
s′∈S

P(s′|s, a)V ∗
M(s)

Algorithm Q-value iteration (Off-policy, Planning with full information)

1: Input: Steps K
2: Initialise: Q-value function Q0(s, a) = 0 for all s, a ∈ S ×A
3: for episodes k = 1, 2, . . . ,K, and state-action pairs (s, a) ∈ (S,A) do
4: Compute Q-table: Evaluate the greedy policy using the Bellman update equation

Qk(s, π(s))← R(s, π(s)) + γ
∑
s′∈S

P(s′|s, π(s))max
b

Qk−1(s
′, b) (2)

5: end for
6: return the greedy policy for all s

πK(s) ∈ argmax
a∈A

QK(s, a) (3)

Basu The Actors and The Critics 8 / 34

PART 1: Revisiting MDPs and RL

Policy Improvement in MDPs with Discrete State-Actions → Q-value Iteration

Greedy improvement: Bellman optimality equations

Value function

V ∗
M(s) = max

a
Q∗

M(s, a)

Q-Value function

Q∗
M(s, a) = T ⋆Q∗

M(s, a) = R(s, a) +
∑
s′∈S

P(s′|s, a)V ∗
M(s)

Algorithm Q-value iteration (Off-policy, Planning with full information)

1: Input: Steps K
2: Initialise: Q-value function Q0(s, a) = 0 for all s, a ∈ S ×A
3: for episodes k = 1, 2, . . . ,K, and state-action pairs (s, a) ∈ (S,A) do
4: Compute Q-table: Evaluate the greedy policy using the Bellman update equation

Qk(s, π(s))← R(s, π(s)) + γ
∑
s′∈S

P(s′|s, π(s))max
b

Qk−1(s
′, b) (2)

5: end for
6: return the greedy policy for all s

πK(s) ∈ argmax
a∈A

QK(s, a) (3)

Basu The Actors and The Critics 8 / 34

PART 1: Revisiting MDPs and RL

Why Does Q-iteration Work?

Q-iteration is a fixed point contraction through stochastic approximation.

∥Qk −Q∗
M∥∞ = ∥T ⋆Qk−1 −Q∗

M∥∞ ≤ γ ∥Qk−1 −Q∗
M∥∞

Alternative update of Equation (2)

Qk(s) = (1− α)Qk−1(s) + αT ⋆Qk−1(s)

This works as
(1) Bellman operator is a contraction, and
(2) µk = (1− α)µk−1 + α× new sample
is a consistent stochastic approximation of mean.

Basu The Actors and The Critics 9 / 34

PART 1: Revisiting MDPs and RL

Limitations of GPIs in MDPs with Discrete State-Actions

Dynamic programming algorithms require an exact representation of value functions and policies.

Thus, GPI with tabular MDPs suffer from:

▶ Discrete States

▶ No generlisation and only look-up tables

▶ Computationally expensive to handle large state-action spaces

▶ Discrete Actions

Approximate RL

Can we approximately learn good representations of transitions and rewards or directly the Q-value
functions, and use them to find a good policy π?

Goal: Find a policy π and functional representation f such that the performance loss ∥V ∗
M − V f

π ∥ is as
small as possible

Basu The Actors and The Critics 10 / 34

PART 1: Revisiting MDPs and RL

Limitations of GPIs in MDPs with Discrete State-Actions

Dynamic programming algorithms require an exact representation of value functions and policies.

Thus, GPI with tabular MDPs suffer from:

▶ Discrete States

▶ No generlisation and only look-up tables

▶ Computationally expensive to handle large state-action spaces

▶ Discrete Actions

Approximate RL

Can we approximately learn good representations of transitions and rewards or directly the Q-value
functions, and use them to find a good policy π?

Goal: Find a policy π and functional representation f such that the performance loss ∥V ∗
M − V f

π ∥ is as
small as possible

Basu The Actors and The Critics 10 / 34

PART 1: Revisiting MDPs and RL

Limitations of GPIs in MDPs with Discrete State-Actions

Dynamic programming algorithms require an exact representation of value functions and policies.

Thus, GPI with tabular MDPs suffer from:

▶ Discrete States

▶ No generlisation and only look-up tables

▶ Computationally expensive to handle large state-action spaces

▶ Discrete Actions

Approximate RL

Can we approximately learn good representations of transitions and rewards or directly the Q-value
functions, and use them to find a good policy π?

Goal: Find a policy π and functional representation f such that the performance loss ∥V ∗
M − V f

π ∥ is as
small as possible

Basu The Actors and The Critics 10 / 34

PART 1: Revisiting MDPs and RL

Four Key Challenges in RL

▶ Planning in Large Spaces (Curse of Dimensionality)
– How to optimise the policy when the number of reachable states and decidable actions are big?

▶ Succinct Representation of Information
– How to succinctly represent the available information regarding states, actions, dynamics and policies?

▶ Exploration–Exploitation Trade-off (Effect of Incomplete Information)
– Should you try out new decisions which may prove to be beneficial or play as best as you can with your
existing knowledge?

▶ Planning under Incomplete Information (Exploration + Planning)
– How to estimate the effect of an action and how to predict the future state reached from a state through the
action?

Basu The Actors and The Critics 11 / 34

PART 1: Revisiting MDPs and RL

Four Key Challenges in RL and Solutions

▶ Planning in Large Spaces (Curse of Dimensionality)

→ Approximate RL

▶ Succinct Representation of Information

→ Abstractions (Frans) + Approximate RL ++

▶ Exploration–Exploitation Trade-off (Effect of Incomplete Information)

→ Bandits (Bert) + Q-learning (Sean) + Optimism (Friday)

▶ Planning under Incomplete Information (Exploration + Planning)

→ Approximate RL + Optimism (Friday)

Basu The Actors and The Critics 11 / 34

PART 2

Function Approximations in RL
From Discrete to Continuous States: Dynamic Programming with Learning

PART 2: Function Approximations in RL

From Discrete to Continuous World: From Q-tables to Q-functions

Q-table

No generalisation across discretisations.

Q-function

−1.25−1.00−0.75−0.50−0.25 0.00 0.25 0.50

−0.06
−0.04

−0.02
0.00

0.02
0.04

0.06

0

10

20

30

40

50

60

70

J∗(z, v)

Position z
Velocity v

Learn the Q-values as a function of (s, a).

Basu The Actors and The Critics 12 / 34

PART 2: Function Approximations in RL

From Discrete to Continuous World: From Q-tables to Q-functions

Q-table

No generalisation across discretisations.

Q-function

−1.25−1.00−0.75−0.50−0.25 0.00 0.25 0.50

−0.06
−0.04

−0.02
0.00

0.02
0.04

0.06

0

10

20

30

40

50

60

70

J∗(z, v)

Position z
Velocity v

Learn the Q-values as a function of (s, a).

Basu The Actors and The Critics 12 / 34

PART 2: Function Approximations in RL

From Discrete to Continuous World: From Q-tables to Q-functions

Q-table

No generalisation across discretisations.

Q-function

−1.25−1.00−0.75−0.50−0.25 0.00 0.25 0.50

−0.06
−0.04

−0.02
0.00

0.02
0.04

0.06

0

10

20

30

40

50

60

70

J∗(z, v)

Position z
Velocity v

Learn the Q-values as a function of (s, a).

Basu The Actors and The Critics 12 / 34

PART 2: Function Approximations in RL

Approximate RL

Problem

Exactly computing a Q-function across a continuous state-action space while looking into trajectories is not
possible.

Question

Can we approximately learn good representations of transitions and rewards or directly the Q-value
functions, and use them to find a good policy π?

Basu The Actors and The Critics 13 / 34

PART 2: Function Approximations in RL

Approximate RL: Planning with Learning (Step 1)

Problem

Exactly computing Q-function across continuous state-action space while using trajectories is not possible.

Question 1

Can we approximately learn generalisable and accurate representations of Q-value?

Solution:
Turn the Q-function computation into a learning problem.

Qk(s, a)← T ⋆Qk−1 = R(s, a) + γ
∑
s′∈S

P(s′|s, π(s))max
b

Qk−1(s
′, b)

a. Write a parametric Bellman update:

Qθ(s, a) = R(s, a) + γ
∑
s′∈S

P(s′|s, π(s))max
b

Qθ(s
′, b) .

Basu The Actors and The Critics 13 / 34

PART 2: Function Approximations in RL

Approximate RL: Planning with Learning (Step 1)

Problem

Exactly computing Q-function across continuous state-action space while using trajectories is not possible.

Question 1

Can we approximately learn generalisable and accurate representations of Q-value?

Solution:
a. Write a parametric Bellman update:

Qθ(s, a) = R(s, a) + γ
∑
s′∈S

P(s′|s, π(s))max
b

Qθ(s
′, b) .

b. Sample trajectories of {(si, ai, ri, s
′
i)}ni=1, and solve the regression problem to learn θ⋆:

θ⋆ = argmin
θ

n∑
i=1

(
Qθ(si, ai)− ri − γmax

b
Qθ(s

′
i, b)

)2

Basu The Actors and The Critics 13 / 34

PART 2: Function Approximations in RL

How to Choose a Function Approximation Space?

Linear Models

Q∗
M ∈ {θ⊤ϕ(s, a), θ ∈ Rd} ,

where ϕ : S ×A → [0,M].

Kernel Models

Q∗
M ∈ {GaussianProcess(µQ,KQ) s.t. µQ(s, a) = k⃗(s, a)⊤H⊤(HKQH

⊤ + λI)−1R⃗} .

Neural Models

Q∗
M ∈ {fθ(s, a), θ ∈ Rd} .

Tutorials will shed further light on how to choose the functions.

Basu The Actors and The Critics 14 / 34

PART 2: Function Approximations in RL

How to Choose a Function Approximation Space?

Linear Models

Q∗
M ∈ {θ⊤ϕ(s, a), θ ∈ Rd} ,

where ϕ : S ×A → [0,M].

Kernel Models

Q∗
M ∈ {GaussianProcess(µQ,KQ) s.t. µQ(s, a) = k⃗(s, a)⊤H⊤(HKQH

⊤ + λI)−1R⃗} .

Neural Models

Q∗
M ∈ {fθ(s, a), θ ∈ Rd} .

Tutorials will shed further light on how to choose the functions.

Basu The Actors and The Critics 14 / 34

PART 2: Function Approximations in RL

Approximate RL: Planning with Learning (Step 2)

θ⋆ = argmin
θ

n∑
i=1

(
Qθ(si, ai)− ri − γmax

b
Qθ(s

′
i, b)

)2

Problem

Unlike in standard approximation schemes (e.g. supervised learning), we have only limited access to the
target function, i.e. Q∗

M.

Question 2

What would be a good way to generate data to directly learn optimal Q-value function?

Basu The Actors and The Critics 15 / 34

PART 2: Function Approximations in RL

Approximate RL: Planning with Learning (Step 2)

Problem

We have only limited access to the target function, i.e. Q∗
M.

Question 2

What would be a good way to generate data to directly learn optimal Q-value function?

Solution:
GPI (e.g. Q-value iteration) tends to iteratively learn functions which are close to the optimal value
function. Leverage the contraction to generate data.

θk+1 = argmin
θ

n∑
i=1

(
Qθ(si, ai)− ri − γmax

b
Qθk (s

′
i, b)

)2
for k = 1, 2, . . .

Basu The Actors and The Critics 15 / 34

PART 2: Function Approximations in RL

Approximate RL: Planning with Learning (Step 3)

Question 3

How to use the learned Q-function Q̂π to find a policy close to optimal π⋆?

Basu The Actors and The Critics 16 / 34

PART 2: Function Approximations in RL

Approximate RL: Planning with Learning (Step 3)

Question 3

How to use the learned Q-function Q̂π to find a policy close to optimal π⋆?

Solution:

If Q̂π is a good approximation of Q∗
M, use it to compute the greedy policy.

πK(s) = argmax
a∈A

Q̂θK (s, a)

Why would it work?

Basu The Actors and The Critics 16 / 34

PART 2: Function Approximations in RL

An Approximate RL Algorithm: Fitted Q-iteration (FQI)

Three Components

1. Sample trajectories of {(si, ai, ri)}ni=1, and solve the regression problem with ri + γmaxb Qθ(s
′
i, b)

as data and Qθ as the parametric function to learn θ⋆.

2. Use the Qθk−1 as the target function to generate data and apply regression iteratively.

3. If Q̂θK is a good approximation of Q∗
M, use it to compute the greedy policy.

Basu The Actors and The Critics 17 / 34

PART 2: Function Approximations in RL

An Approximate RL Algorithm: Fitted Q-iteration (FQI)

Algorithm Fitted Q-Iteration (FQI)

1: Input: Steps K , number of samples n, (an initial state distribution ρ and initial policy π0) (alternatively,
a sampling distribution)

2: Initialise: parameter of Q-value function θ0
3: for episodes k = 1, 2, . . . ,K do
4: Draw n samples (si, ai) ∼ ρπ0.
5: Draw n next states s′i ∼ P(·|si, ai) and rewards ri ∼ R(si, ai)

6: Create a dataset Hk = {(si, ai), yi} such that yi ≜ ri + γmaxb Qθk (s
′
i, b)

7: Solve the regression problem and compute Q̂θk

θk+1 = argmin
θ

n∑
i=1

(
Qθ(si, ai)− ri − γmax

b
Qθk (s

′
i, b)

)2
8: end for
9: return the greedy policy for all s

πK(s) ∈ argmax
a∈A

Q̂θK (s, a)

Basu The Actors and The Critics 17 / 34

PART 2: Function Approximations in RL

Why Does FQI Work?

Performance Loss to Learning Error: Contraction of Greedy Policy

∥∥∥V ∗
M − V̂πK ,θK

∥∥∥
∞
≤ 2γ

1− γ

∥∥∥V ∗
M − V̂θK

∥∥∥
∞

From Learning Error to Estimation and Approximation Errors (Lazaric et al., 2012)

∥∥∥V ∗
M − V̂n,θK

∥∥∥
Pπ
≤
∥∥∥V ∗

M − V̂n

∥∥∥
Pπ

+
∥∥∥V̂n − V̂n,θK

∥∥∥
Pπ

▶ Estimation Error: Depends on the complexity of the function class and the coverage of samples
collected

▶ Approximation Error: How good is the function class to approximate the optimal value function and

generalise across state-action space.

Basu The Actors and The Critics 18 / 34

PART 2: Function Approximations in RL

Why Does FQI Work?

Performance Loss to Learning Error: Contraction of Greedy Policy

∥∥∥V ∗
M − V̂πK ,θK

∥∥∥
∞
≤ 2γ

1− γ

∥∥∥V ∗
M − V̂θK

∥∥∥
∞

From Learning Error to Estimation and Approximation Errors (Lazaric et al., 2012)

∥∥∥V ∗
M − V̂n,θK

∥∥∥
Pπ
≤
∥∥∥V ∗

M − V̂n

∥∥∥
Pπ

+
∥∥∥V̂n − V̂n,θK

∥∥∥
Pπ

▶ Estimation Error: Depends on the complexity of the function class and the coverage of samples
collected

▶ Approximation Error: How good is the function class to approximate the optimal value function and

generalise across state-action space.

Basu The Actors and The Critics 18 / 34

PART 2: Function Approximations in RL

Limitations of FQI

▶ FQI is an Offline RL algorithm.

▶ FQI loops over all possible actions to get next best action at+1:

argmax
a∈A

Qk
θ(st, a)

▶ FQI encounters instability (target depends on Qk−1
θ (st+1, a)).

▶ Collects data at every episode and forget them in the next one.

Basu The Actors and The Critics 19 / 34

PART 2: Function Approximations in RL

From FQI to DQN: Baby Steps to Deep RL

▶ DQN is an Online RL algorithm

▶ One forward pass to get all Qθk (st, a)

▶ Use a target network Qθk−1(st+1, a)
to ensure stability

▶ Uses replay buffer to reuse the data

Courtesy: Antonin Raffin, RLSS 2023

Basu The Actors and The Critics 20 / 34

PART 2: Function Approximations in RL

The Deadly Triad of RL

If we use FQI or DQN with experience replay, we face the deadly triads of RL (Hasselt et al., 2018).

1 Function approximation: Using a neural network or linear model to fit Q-values.

2 Bootstrapping: Using maxa Qθ(s, a) to construct the target data.

3 Off-policy learning: Replay buffer holds data from a mixture of past policies.

The Silver Lining or Myopia?

Empirically, we rarely see the deadly triad appearing destructively, while some explosions of Q-value that
recover after an initial phase are common (soft divergence).

Do we need a better and new approach to approximate RL theory?

Basu The Actors and The Critics 21 / 34

PART 2: Function Approximations in RL

The Deadly Triad of RL

If we use FQI or DQN with experience replay, we face the deadly triads of RL (Hasselt et al., 2018).

1 Function approximation: Using a neural network or linear model to fit Q-values.

2 Bootstrapping: Using maxa Qθ(s, a) to construct the target data.

3 Off-policy learning: Replay buffer holds data from a mixture of past policies.

The Silver Lining or Myopia?

Empirically, we rarely see the deadly triad appearing destructively, while some explosions of Q-value that
recover after an initial phase are common (soft divergence).

Do we need a better and new approach to approximate RL theory?

Basu The Actors and The Critics 21 / 34

PART 2: Function Approximations in RL

Intermediate Summary: Value-based Approximate RL

▶ Leverage Bellman operator’s contraction to iteratively approximate Q∗
M.

▶ Parametrise the Q-value functions and turn learning it into an iterative regression problem.

θk+1 = argmin
θ

n∑
i=1

(
Qθ(si, ai)− ri − γmax

b
Qθk (s

′
i, b)

)2
for k = 1, 2, . . . ,K .

▶ Use a “good” data-generating policy to cover the state-action space and/or reuse the old collected
data “smartly”.

▶ Use greedy policy once a good approximation QθK is computed.

Basu The Actors and The Critics 22 / 34

PART 3

Policy Gradient Algorithms
From Dynamic Programming to Parametric Policy Optimisation

PART 3: Policy Gradient Algorithms

Policy-based Algorithms

Step 1: Policy Parametrisation. Represent the probability distribution over actions, i.e. a stochastic policy

π : S → ∆A, as a parametric family (πθ).

Basu The Actors and The Critics 23 / 34

PART 3: Policy Gradient Algorithms

Policy-based Algorithms

Step 1: Policy Parametrisation. Represent the probability distribution over actions, i.e. a stochastic policy

π : S → ∆A, as a parametric family (πθ).

Discrete Actions

1. Direct Parametrisation:

πθ(a|s) = θs,a such that
∑
s,a

θs,a = 1 and θs,a ≥ 0.

2. Log-linear Policy:

πθ(a|s) =
exp(θ⊤ϕ(a, s))∑
s,a exp(θ

⊤ϕ(a, s))
.

3. Neural Softmax Policy:

πθ(a|s) =
exp(fθ(a, s))∑
s,a exp(fθ(a, s))

.

Basu The Actors and The Critics 23 / 34

PART 3: Policy Gradient Algorithms

Policy-based Algorithms

Step 1: Policy Parametrisation. Represent the probability distribution over actions, i.e. a stochastic policy

π : S → ∆A, as a parametric family (πθ).

Discrete Actions

1. Direct Parametrisation
2. Log-linear Policy
3. Neural Softmax Policy

πθ(a|s) =
exp(fθ(a, s))∑
s,a exp(fθ(a, s))

.

Continuous Actions

1. Gaussian:

πθ(a|s) =
1√

2π σ2
θ(s)

exp

 (a− µθ(s))
2

2 σ2
θ(s)

 .

2. Beta (for Bounded Actions) (Chou et al., 2017):

πθ(a|s) = Beta

(
a+Amax

2Amax
; αθ(s), βθ(s)

)
.

Basu The Actors and The Critics 23 / 34

PART 3: Policy Gradient Algorithms

Policy-based Algorithms

Step 1: Policy Parametrisation. Represent the probability distribution over actions, i.e. a stochastic policy

π : S → ∆A, as a parametric family (πθ).

Step 2: Policy Optimisation. Find the parameter θ⋆ that maximises the long-term expected reward

θ⋆ = argmax
θ

E

[
∞∑
t=0

γR(st, at) | s0 ∼ ρ, at ∼ πθ(·|st)

]
= argmax

θ
Es0∼ρ [V

πθ (s0)]

Here, ρ is the initial state distribution.

Basu The Actors and The Critics 23 / 34

PART 3: Policy Gradient Algorithms

Policy-based Algorithms

Step 1: Policy Parametrisation. Represent the probability distribution over actions, i.e. a stochastic policy

π : S → ∆A, as a parametric family (πθ).

Step 2: Policy Optimisation. Find the parameter θ⋆ that maximises the long-term expected reward

θ⋆ = argmax
θ

E

[
∞∑
t=0

γR(st, at) | s0 ∼ ρ, at ∼ πθ(·|st)

]
= argmax

θ
Es0∼ρ [V

πθ (s0)]

Here, ρ is the initial state distribution.

The Hill Ahead

Es0∼ρ [V
πθ (s0)] is non-concave in θ.

Basu The Actors and The Critics 23 / 34

PART 3: Policy Gradient Algorithms

Policy Gradient Algorithms

Apply gradient ascent on J(πθ) = Es0∼ρ [V
πθ (s0)]

θk+1 ← θk + ηk∇θJ(πθ) .

Issue

We cannot exactly compute the gradient of J(πθ).

Solution: Stochastic Approximation

Construct a stochastic estimate of ∇θJ(πθ) from data collected by playing πθk .

Research Question

How to construct a “good” estimator of ∇θJ(πθ)?

Basu The Actors and The Critics 24 / 34

PART 3: Policy Gradient Algorithms

Policy Gradient Algorithms

Apply gradient ascent on J(πθ) = Es0∼ρ [V
πθ (s0)]

θk+1 ← θk + ηk∇θJ(πθ) .

Issue

We cannot exactly compute the gradient of J(πθ).

Solution: Stochastic Approximation

Construct a stochastic estimate of ∇θJ(πθ) from data collected by playing πθk .

Research Question

How to construct a “good” estimator of ∇θJ(πθ)?

Basu The Actors and The Critics 24 / 34

PART 3: Policy Gradient Algorithms

Policy Gradient Algorithms

Apply gradient ascent on J(πθ) = Es0∼ρ [V
πθ (s0)]

θk+1 ← θk + ηk∇θJ(πθ) .

Issue

We cannot exactly compute the gradient of J(πθ).

Solution: Stochastic Approximation

Construct a stochastic estimate of ∇θJ(πθ) from data collected by playing πθk .

Research Question

How to construct a “good” estimator of ∇θJ(πθ)?

Basu The Actors and The Critics 24 / 34

PART 3: Policy Gradient Algorithms

The Policy Gradient Theorem

Theorem (Policy Gradient Theorem (Williams, 1992))

∇θJ(πθ) = E
τ ∼ Pθ

[
Z(τ)

∞∑
t=0

∇θ log πθ(at|st)

]

Basu The Actors and The Critics 25 / 34

PART 3: Policy Gradient Algorithms

The Policy Gradient Theorem

Theorem (Policy Gradient Theorem (Williams, 1992))

∇θJ(πθ) = E
τ ∼ Pθ

[
Z(τ)

∞∑
t=0

∇θ log πθ(at|st)

]

▶ τ is a trajectory {s1, a1, . . . , st, at, . . .} generated by the probability distribution induced by policy πθ

and transition function P:

Pθ(τ) = ρ(s0)
∞∏
t=0

πθ(at|st)P(st+1|st, at)

Basu The Actors and The Critics 25 / 34

PART 3: Policy Gradient Algorithms

The Policy Gradient Theorem

Theorem (Policy Gradient Theorem (Williams, 1992))

∇θJ(πθ) = Eτ∼Pθ

[
Z(τ)

∞∑
t=0

∇θ log πθ(at|st)

]

▶ τ is a trajectory {s1, a1, . . . , st, at, . . .} generated by the probability distribution induced by policy πθ

and transition function P:

Pθ(τ) ≜ ρ(s0)
∞∏
t=0

πθ(at|st)P(st+1|st, at)

▶ Z(τ) is the return from the trajectory τ : Z(τ) ≜
∑∞

t=0 γ
trt.

Basu The Actors and The Critics 25 / 34

PART 3: Policy Gradient Algorithms

The Policy Gradient Theorem

Theorem (Policy Gradient Theorem (Williams, 1992))

∇θJ(πθ) = Eτ∼Pθ

[
Z(τ)

∞∑
t=0

∇θ log πθ(at|st)

]

▶ τ is a trajectory {s1, a1, . . . , st, at, . . .} generated by the probability distribution Pθ(τ) induced by
policy πθ and transition function P.

▶ Z(τ) is the return from the trajectory τ : Z(τ) ≜
∑∞

t=0 γ
trt.

▶ The gradient ∇θ log πθ(at|st) = ∇θπθ(at|st)
πθ(at|st) is called the score function and exists for differentiable

parametric policies.

Example: Score Function of log-linear Policies

If πθ(a|s) = exp(θ⊤ϕ(a,s))∑
s,a exp(θ⊤ϕ(a,s))

, then ∇θ log πθ(a|s) = ϕ(a, s)− Ea∼πθ(·|s) [ϕ(a, s)].

Basu The Actors and The Critics 25 / 34

PART 3: Policy Gradient Algorithms

REINFORCE: The Monte-Carlo Estimator

Algorithm REINFORCE

1: Input: Learning rate η, episode number K
2: Initialise: Initial policy parameter θ0
3: for episodes k = 0, . . . ,K do
4: Generate a trajectory τK from policy πθk

5: Estimate the gradient at θ = θk:

∇REINFORCE
θ J(πθ)←

(
∞∑
t=0

γtrt

)(
∞∑
t=0

γt∇θ log πθ(at|st)

)

6: Apply policy gradient ascent

θk+1 ← θk + η∇REINFORCE
θ J(πθ) |θ=θk

7: end for

- A single infinite-length trajectory is enough to create an unbiased estimate without learning transition P.
- Estimator has high variance due to correlation of Z(τ) and {πθ(at|st)}t.

Basu The Actors and The Critics 26 / 34

PART 3: Policy Gradient Algorithms

REINFORCE: The Monte-Carlo Estimator

Algorithm REINFORCE

1: Input: Learning rate η, episode number K
2: Initialise: Initial policy parameter θ0
3: for episodes k = 0, . . . ,K do
4: Generate a trajectory τK from policy πθk

5: Estimate the gradient at θ = θk:

∇REINFORCE
θ J(πθ)←

(
∞∑
t=0

γtrt

)(
∞∑
t=0

γt∇θ log πθ(at|st)

)

6: Apply policy gradient ascent

θk+1 ← θk + η∇REINFORCE
θ J(πθ) |θ=θk

7: end for

- A single infinite-length trajectory is enough to create an unbiased estimate without learning transition P.
- Estimator has high variance due to correlation of Z(τ) and {πθ(at|st)}t.

Basu The Actors and The Critics 26 / 34

PART 3: Policy Gradient Algorithms

REINFORCE: The Q-function and Advantage Function based Estimators

How to leverage the Markovianity in estimation?

Q-value Function version of Policy Gradient Theorem

∇θJ(πθ) = Eτ∼Pθ

 (∞∑
t=0

γsri

)
∞∑
t=0

∇θ log πθ(at|st)

 = Eτ∼Pθ

 ∞∑
t=0

(
∞∑
i=t

γiri

)
∇θ log πθ(at|st)


= Eτ∼Pθ

[
∞∑
t=0

γtQπθ (st, at) ∇θ log πθ(at|st)

]

Basu The Actors and The Critics 27 / 34

PART 3: Policy Gradient Algorithms

REINFORCE: The Q-function and Advantage Function based Estimators

How to decrease variance of the estimator?

Baseline Function version of Policy Gradient Theorem

∇θJ(πθ) = Eτ∼Pθ

[
∞∑
t=0

γtQπθ (st, at) ∇θ log πθ(at|st)

]

= Eτ∼Pθ

[
∞∑
t=0

γt
(
Qπθ (st, at)− b(st)

)
∇θ log πθ(at|st)

]

if the baseline function satisfies Ea∼πθ [b(s)∇θ log πθ(a|s)] = 0.

Basu The Actors and The Critics 27 / 34

PART 3: Policy Gradient Algorithms

REINFORCE: The Q-function and Advantage Function based Estimators

How to decrease variance of the estimator?

Baseline Function version of Policy Gradient Theorem

∇θJ(πθ) = Eτ∼Pθ

[
∞∑
t=0

γt
(
Qπθ (st, at)− b(st)

)
∇θ log πθ(at|st)

]
(4)

if the baseline function satisfies Ea∼πθ [b(s)∇θ log πθ(a|s)] = 0.

A good choice of b(s) is Vπθ (s).

Advantage Function version of Policy Gradient Theorem

∇θJ(πθ) = Eτ∼Pθ

[
∞∑
t=0

γt
(
Qπθ (st, at)− Vπθ (st)

)
∇θ log πθ(at|st)

]

= Eτ∼Pθ

[
∞∑
t=0

γt Aπθ (st, at) ∇θ log πθ(at|st)

]

Basu The Actors and The Critics 27 / 34

PART 3: Policy Gradient Algorithms

Natural Policy Gradient (NPG): The Covariance Corrected Estimator

Algorithm Natural Policy Gradient (NPG)

1: Input: Learning rate η, episode number K
2: Initialise: Initial policy parameter θ0
3: for episodes k = 0, . . . ,K do
4: Generate a trajectory τK from policy πθk

5: Estimate the gradient at θ = θk
6: Estimate the covariance Σθk at θ = θk
7: Apply covariance/curvature-calibrated policy gradient ascent

θk+1 ← θk + η (Σθk)
†∇̂θJ(πθ) |θ=θk

8: end for

Here, Σθk = Eτ∼Pθk

[
∇θ log πθ(a|s) (∇θ log πθ(a|s))⊤

]

Basu The Actors and The Critics 28 / 34

PART 3: Policy Gradient Algorithms

Different Proximal Estimators and Optimisers: PPO, TRPO,...

We can reinterpret the NPG as a proximal gradient ascent step:

θk+1 = argmax
θ

J(πθ) s.t. KL (Pθk ||Pθ) ≤ ϵ .

where we do a second order approximation of KL:
1

2
(θ − θk)

⊤Σθk (θ − θk) ≤ ϵ .

Success of this approach motivates development of different proximal policy gradient algorithms.

TRPO (Schulman et al., 2015)

max
θ

Eτ∼Pθk

[
πθ(a|s)
πθk (a|s)

Aπθ (s, a)

]
s.t. Es∼Pθk

[KL (πθ(·|s)||πθk (·|s))] ≤ ϵ .

PPO (Schulman et al., 2017)

max
θ

Eτ∼Pθk

[
min

{
πθ(a|s)
πθk (a|s)

Aπθ (s, a), clip

(
πθ(a|s)
πθk (a|s)

; 1 + δ, 1− δ

)
Aπθ (s, a)

}]
.

Basu The Actors and The Critics 29 / 34

PART 3: Policy Gradient Algorithms

Different Proximal Estimators and Optimisers: PPO, TRPO,...

We can reinterpret the NPG as a proximal gradient ascent step:

θk+1 = argmax
θ

J(πθ) s.t. KL (Pθk ||Pθ) ≤ ϵ .

where we do a second order approximation of KL:
1

2
(θ − θk)

⊤Σθk (θ − θk) ≤ ϵ .

Success of this approach motivates development of different proximal policy gradient algorithms.

TRPO (Schulman et al., 2015)

max
θ

Eτ∼Pθk

[
πθ(a|s)
πθk (a|s)

Aπθ (s, a)

]
s.t. Es∼Pθk

[KL (πθ(·|s)||πθk (·|s))] ≤ ϵ .

PPO (Schulman et al., 2017)

max
θ

Eτ∼Pθk

[
min

{
πθ(a|s)
πθk (a|s)

Aπθ (s, a), clip

(
πθ(a|s)
πθk (a|s)

; 1 + δ, 1− δ

)
Aπθ (s, a)

}]
.

Basu The Actors and The Critics 29 / 34

PART 3: Policy Gradient Algorithms

When Does Policy Gradient Work?: Convergence Analysis

Optimisation Perspective

When J(πθ) is a ”concave-like” function, the stochastic gradient ascent would work.

J(πθ⋆)− J(πθ) = O (∥∇θJ(πθ)∥) .

Statistical Perspective

If we have data with enough “coverage” of the state-action space and we have an unbiased estimator, we
can apply the policy gradient theorems almost surely.

∥∇θJ(πθ)− ∇̂θJ(πθ)∥ ≤ ϵ(#samples, δ) with probability 1− δ.

For details, check some interesting works below.1

11. Lin Xiao. On the convergence rates of policy gradient methods. JMLR, 2022.
2. Alekh Agarwal, Sham M. Kakade, Jason D. Lee, and Gaurav Mahajan. On the theory of policy gradient methods: Optimality,
approximation, and distribution shift. JMLR, 2021.
3. Alekh Agarwal, Sham M Kakade, Jason D Lee, and Gaurav Mahajan. Optimality and approximation with policy gradient methods
in markov decision processes. COLT, 2020.

Basu The Actors and The Critics 30 / 34

PART 3: Policy Gradient Algorithms

When Does Policy Gradient Work?: Convergence Analysis

Optimisation Perspective

When J(πθ) is a ”concave-like” function, the stochastic gradient ascent would work.

J(πθ⋆)− J(πθ) = O (∥∇θJ(πθ)∥) .

Statistical Perspective

If we have data with enough “coverage” of the state-action space and we have an unbiased estimator, we
can apply the policy gradient theorems almost surely.

∥∇θJ(πθ)− ∇̂θJ(πθ)∥ ≤ ϵ(#samples, δ) with probability 1− δ.

For details, check some interesting works below.1

11. Lin Xiao. On the convergence rates of policy gradient methods. JMLR, 2022.
2. Alekh Agarwal, Sham M. Kakade, Jason D. Lee, and Gaurav Mahajan. On the theory of policy gradient methods: Optimality,
approximation, and distribution shift. JMLR, 2021.
3. Alekh Agarwal, Sham M Kakade, Jason D Lee, and Gaurav Mahajan. Optimality and approximation with policy gradient methods
in markov decision processes. COLT, 2020.

Basu The Actors and The Critics 30 / 34

PART 3: Policy Gradient Algorithms

Challenges in Policy-based RL Algorithm Design

1 Hard to choose the good stepsize

▶ Use clipping, hyperparameter tuning

2 High sample complexity if we cannot use the samples collected from previous policies

▶ Use importance sampling, replay buffer

3 The stochastic gradient estimators suffer high variance

▶ Use baseline functions with actor-critic methods

Basu The Actors and The Critics 31 / 34

PART 4

What’s ahead?
Actor-Critic Algorithms, Exploration–Exploitation Trade-offs, and

PART 4: What’s ahead?

Actors vs. Critics: Value-based RL vs. Policy-based RL

Value-based RL (Critics)

Approach: Learn the optimal Value or Q-value
function

Algorithms: Value/Q-value Iteration,
Q-learning, Fitted Q-iteration, DQN

Pros: Low variance, good convergence
guarantees

Cons: Scales badly with dimensions

Policy-based RL (Actors)

Approach: Learn the optimal (parametrised)
policy directly

Algorithms: Policy Iteration, REINFORCE,
NPG, TRPO, PPO

Pros: Scales for large state-action spaces

Cons: High variance and sample complexity

Basu The Actors and The Critics 32 / 34

PART 4: What’s ahead?

Actors vs. Critics: Value-based RL vs. Policy-based RL

Value-based RL (Critics)

Approach: Learn the optimal Value or Q-value
function

Algorithms: Value/Q-value Iteration,
Q-learning, Fitted Q-iteration, DQN

Pros: Low variance, good convergence
guarantees

Cons: Scales badly with dimensions

Policy-based RL (Actors)

Approach: Learn the optimal (parametrised)
policy directly

Algorithms: Policy Iteration, REINFORCE,
NPG, TRPO, PPO

Pros: Scales for large state-action spaces

Cons: High variance and sample complexity

Basu The Actors and The Critics 32 / 34

PART 4: What’s ahead?

Actor-Critic Algorithms

Basu The Actors and The Critics 33 / 34

PART 4: What’s ahead?

What We Have not Covered?

▶ What are the theoretical guarantees of RL algorithms? How to derive them?
→ Convergence analysis
→ Regret upper bounds
→ Stability analysis
→ Sample-complexity bounds

▶ How to understand generalisation ability of the learned function approximators and corresponding RL
policies?
→ Learning theory and generalisation errors meet RL

▶ How to explore either while collecting data for RL training or while running the RL algorithm itself?
→ Exploration–exploitation trade-offs

▶ How to be robust and safe while learning and execution?
→ Robust MDPs and Safe RL

Basu The Actors and The Critics 34 / 34

Thanks to our collaborators, teachers, and the audience!

Questions?

PART 4: What’s ahead?

References I

Basu The Actors and The Critics 34 / 34

	PART 1: Revisiting MDPs and RL
	PART 2: Function Approximations in RL
	PART 3: Policy Gradient Algorithms
	PART 4: What's ahead?

